ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.08246
  4. Cited By
Characterizing Implicit Bias in Terms of Optimization Geometry
v1v2v3 (latest)

Characterizing Implicit Bias in Terms of Optimization Geometry

22 February 2018
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Characterizing Implicit Bias in Terms of Optimization Geometry"

40 / 290 papers shown
Title
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
91
367
0
13 Jun 2019
Characterizing the implicit bias via a primal-dual analysis
Characterizing the implicit bias via a primal-dual analysis
Ziwei Ji
Matus Telgarsky
75
20
0
11 Jun 2019
Stochastic Mirror Descent on Overparameterized Nonlinear Models:
  Convergence, Implicit Regularization, and Generalization
Stochastic Mirror Descent on Overparameterized Nonlinear Models: Convergence, Implicit Regularization, and Generalization
Navid Azizan
Sahin Lale
B. Hassibi
164
74
0
10 Jun 2019
The Implicit Bias of AdaGrad on Separable Data
The Implicit Bias of AdaGrad on Separable Data
Qian Qian
Xiaoyuan Qian
70
23
0
09 Jun 2019
Inductive Bias of Gradient Descent based Adversarial Training on
  Separable Data
Inductive Bias of Gradient Descent based Adversarial Training on Separable Data
Yan Li
Ethan X. Fang
Huan Xu
T. Zhao
92
16
0
07 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed
  Optimization
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
105
322
0
31 May 2019
Implicit Regularization in Deep Matrix Factorization
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
111
509
0
31 May 2019
Generalization bounds for deep convolutional neural networks
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
136
90
0
29 May 2019
On Dropout and Nuclear Norm Regularization
On Dropout and Nuclear Norm Regularization
Poorya Mianjy
R. Arora
143
23
0
28 May 2019
Convergence and Margin of Adversarial Training on Separable Data
Convergence and Margin of Adversarial Training on Separable Data
Zachary B. Charles
Shashank Rajput
S. Wright
Dimitris Papailiopoulos
AAML
71
17
0
22 May 2019
A type of generalization error induced by initialization in deep neural
  networks
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Yaoyu Zhang
Zheng Ma
128
51
0
19 May 2019
Lexicographic and Depth-Sensitive Margins in Homogeneous and
  Non-Homogeneous Deep Models
Lexicographic and Depth-Sensitive Margins in Homogeneous and Non-Homogeneous Deep Models
Mor Shpigel Nacson
Suriya Gunasekar
Jason D. Lee
Nathan Srebro
Daniel Soudry
95
94
0
17 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz
  Augmentation
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
87
110
0
09 May 2019
A Selective Overview of Deep Learning
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDLVLM
206
135
0
10 Apr 2019
A Stochastic Interpretation of Stochastic Mirror Descent: Risk-Sensitive
  Optimality
A Stochastic Interpretation of Stochastic Mirror Descent: Risk-Sensitive Optimality
Navid Azizan
B. Hassibi
28
5
0
03 Apr 2019
High-Dimensional Linear Regression via Implicit Regularization
High-Dimensional Linear Regression via Implicit Regularization
P. Zhao
Yun Yang
Qiaochu He
71
26
0
22 Mar 2019
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Surprises in High-Dimensional Ridgeless Least Squares Interpolation
Trevor Hastie
Andrea Montanari
Saharon Rosset
Robert Tibshirani
302
747
0
19 Mar 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with
  Structured Covariance Noise
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
73
22
0
21 Feb 2019
Generalization Error Bounds of Gradient Descent for Learning
  Over-parameterized Deep ReLU Networks
Generalization Error Bounds of Gradient Descent for Learning Over-parameterized Deep ReLU Networks
Yuan Cao
Quanquan Gu
ODLMLTAI4CE
153
158
0
04 Feb 2019
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Asymmetric Valleys: Beyond Sharp and Flat Local Minima
Haowei He
Gao Huang
Yang Yuan
ODLMLT
86
150
0
02 Feb 2019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
Sai Praneeth Karimireddy
Quentin Rebjock
Sebastian U. Stich
Martin Jaggi
113
503
0
28 Jan 2019
Fine-Grained Analysis of Optimization and Generalization for
  Overparameterized Two-Layer Neural Networks
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
234
974
0
24 Jan 2019
Improving Generalization of Deep Neural Networks by Leveraging Margin
  Distribution
Improving Generalization of Deep Neural Networks by Leveraging Margin Distribution
Shen-Huan Lyu
Lu Wang
Zhi Zhou
43
11
0
27 Dec 2018
Deep Geometric Prior for Surface Reconstruction
Deep Geometric Prior for Surface Reconstruction
Francis Williams
T. Schneider
Claudio Silva
Denis Zorin
Joan Bruna
Daniele Panozzo
3DPC
130
191
0
27 Nov 2018
Minimum weight norm models do not always generalize well for over-parameterized problems
Vatsal Shah
Anastasios Kyrillidis
Sujay Sanghavi
105
21
0
16 Nov 2018
A Continuous-Time View of Early Stopping for Least Squares
A Continuous-Time View of Early Stopping for Least Squares
Alnur Ali
J. Zico Kolter
Robert Tibshirani
102
97
0
23 Oct 2018
Condition Number Analysis of Logistic Regression, and its Implications
  for Standard First-Order Solution Methods
Condition Number Analysis of Logistic Regression, and its Implications for Standard First-Order Solution Methods
R. Freund
Paul Grigas
Rahul Mazumder
58
10
0
20 Oct 2018
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
A Modern Take on the Bias-Variance Tradeoff in Neural Networks
Brady Neal
Sarthak Mittal
A. Baratin
Vinayak Tantia
Matthew Scicluna
Simon Lacoste-Julien
Ioannis Mitliagkas
87
168
0
19 Oct 2018
Regularization Matters: Generalization and Optimization of Neural Nets
  v.s. their Induced Kernel
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
Jason D. Lee
Qiang Liu
Tengyu Ma
268
245
0
12 Oct 2018
Diffusion Scattering Transforms on Graphs
Diffusion Scattering Transforms on Graphs
Fernando Gama
Alejandro Ribeiro
Joan Bruna
GNN
97
103
0
22 Jun 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU
  Models?
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
90
19
0
12 Jun 2018
Implicit regularization and solution uniqueness in over-parameterized
  matrix sensing
Implicit regularization and solution uniqueness in over-parameterized matrix sensing
Kelly Geyer
Anastasios Kyrillidis
A. Kalev
116
4
0
06 Jun 2018
Stochastic Gradient Descent on Separable Data: Exact Convergence with a
  Fixed Learning Rate
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
FedMLMLT
102
102
0
05 Jun 2018
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit
  Regularization
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
B. Hassibi
86
64
0
04 Jun 2018
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Implicit Bias of Gradient Descent on Linear Convolutional Networks
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
MDE
139
414
0
01 Jun 2018
Risk and parameter convergence of logistic regression
Risk and parameter convergence of logistic regression
Ziwei Ji
Matus Telgarsky
86
130
0
20 Mar 2018
Convergence of Gradient Descent on Separable Data
Convergence of Gradient Descent on Separable Data
Mor Shpigel Nacson
Jason D. Lee
Suriya Gunasekar
Pedro H. P. Savarese
Nathan Srebro
Daniel Soudry
109
169
0
05 Mar 2018
Spurious Valleys in Two-layer Neural Network Optimization Landscapes
Spurious Valleys in Two-layer Neural Network Optimization Landscapes
Luca Venturi
Afonso S. Bandeira
Joan Bruna
97
74
0
18 Feb 2018
The Implicit Bias of Gradient Descent on Separable Data
The Implicit Bias of Gradient Descent on Separable Data
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
241
925
0
27 Oct 2017
Nonparametric regression using deep neural networks with ReLU activation
  function
Nonparametric regression using deep neural networks with ReLU activation function
Johannes Schmidt-Hieber
244
817
0
22 Aug 2017
Previous
123456