Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.07623
Cited By
Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives
21 February 2018
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives"
50 / 131 papers shown
Title
Cardinality-Minimal Explanations for Monotonic Neural Networks
Ouns El Harzli
Bernardo Cuenca Grau
Ian Horrocks
FAtt
40
5
0
19 May 2022
Sparse Visual Counterfactual Explanations in Image Space
Valentyn Boreiko
Maximilian Augustin
Francesco Croce
Philipp Berens
Matthias Hein
BDL
CML
32
26
0
16 May 2022
Gradient-based Counterfactual Explanations using Tractable Probabilistic Models
Xiaoting Shao
Kristian Kersting
BDL
22
1
0
16 May 2022
Diffusion Models for Counterfactual Explanations
Guillaume Jeanneret
Loïc Simon
F. Jurie
DiffM
35
55
0
29 Mar 2022
Human-Centered Concept Explanations for Neural Networks
Chih-Kuan Yeh
Been Kim
Pradeep Ravikumar
FAtt
42
26
0
25 Feb 2022
First is Better Than Last for Language Data Influence
Chih-Kuan Yeh
Ankur Taly
Mukund Sundararajan
Frederick Liu
Pradeep Ravikumar
TDI
34
20
0
24 Feb 2022
Holistic Adversarial Robustness of Deep Learning Models
Pin-Yu Chen
Sijia Liu
AAML
54
16
0
15 Feb 2022
Analogies and Feature Attributions for Model Agnostic Explanation of Similarity Learners
Karthikeyan N. Ramamurthy
Amit Dhurandhar
Dennis L. Wei
Zaid Bin Tariq
FAtt
45
3
0
02 Feb 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN
Yangqiu Song
Qiulin Wang
Jiquan Pei
Yu Yang
Xiangyang Ji
CVBM
32
3
0
24 Jan 2022
On the Robustness of Sparse Counterfactual Explanations to Adverse Perturbations
M. Virgolin
Saverio Fracaros
CML
26
36
0
22 Jan 2022
Towards a Shapley Value Graph Framework for Medical peer-influence
J. Duell
M. Seisenberger
Gert Aarts
Shang-Ming Zhou
Xiuyi Fan
21
0
0
29 Dec 2021
Towards Relatable Explainable AI with the Perceptual Process
Wencan Zhang
Brian Y. Lim
AAML
XAI
27
62
0
28 Dec 2021
Counterfactual Explanations via Latent Space Projection and Interpolation
Brian Barr
Matthew R. Harrington
Samuel Sharpe
Capital One
BDL
38
10
0
02 Dec 2021
MCCE: Monte Carlo sampling of realistic counterfactual explanations
Annabelle Redelmeier
Martin Jullum
K. Aas
Anders Løland
BDL
37
11
0
18 Nov 2021
Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions
Prateek Yadav
Peter Hase
Joey Tianyi Zhou
21
11
0
01 Nov 2021
On Quantitative Evaluations of Counterfactuals
Frederik Hvilshoj
Alexandros Iosifidis
Ira Assent
19
10
0
30 Oct 2021
Explaining Latent Representations with a Corpus of Examples
Jonathan Crabbé
Zhaozhi Qian
F. Imrie
M. Schaar
FAtt
18
37
0
28 Oct 2021
Deep Neural Networks and Tabular Data: A Survey
V. Borisov
Tobias Leemann
Kathrin Seßler
Johannes Haug
Martin Pawelczyk
Gjergji Kasneci
LMTD
49
650
0
05 Oct 2021
Generating User-Centred Explanations via Illocutionary Question Answering: From Philosophy to Interfaces
Francesco Sovrano
F. Vitali
48
14
0
02 Oct 2021
Designing Counterfactual Generators using Deep Model Inversion
Jayaraman J. Thiagarajan
V. Narayanaswamy
Deepta Rajan
J. Liang
Akshay S. Chaudhari
A. Spanias
DiffM
20
22
0
29 Sep 2021
Let the CAT out of the bag: Contrastive Attributed explanations for Text
Saneem A. Chemmengath
A. Azad
Ronny Luss
Amit Dhurandhar
FAtt
34
10
0
16 Sep 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
48
5
0
15 Sep 2021
From Heatmaps to Structural Explanations of Image Classifiers
Li Fuxin
Zhongang Qi
Saeed Khorram
Vivswan Shitole
Prasad Tadepalli
Minsuk Kahng
Alan Fern
XAI
FAtt
23
4
0
13 Sep 2021
An Objective Metric for Explainable AI: How and Why to Estimate the Degree of Explainability
Francesco Sovrano
F. Vitali
42
30
0
11 Sep 2021
Unsupervised Causal Binary Concepts Discovery with VAE for Black-box Model Explanation
Thien Q. Tran
Kazuto Fukuchi
Youhei Akimoto
Jun Sakuma
CML
40
10
0
09 Sep 2021
Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey
Richard Dazeley
Peter Vamplew
Francisco Cruz
32
60
0
20 Aug 2021
Uncertainty Estimation and Out-of-Distribution Detection for Counterfactual Explanations: Pitfalls and Solutions
Eoin Delaney
Derek Greene
Mark T. Keane
27
24
0
20 Jul 2021
Contrastive Explanations for Argumentation-Based Conclusions
A. Borg
Floris Bex
11
7
0
07 Jul 2021
Generating Contrastive Explanations for Inductive Logic Programming Based on a Near Miss Approach
Johannes Rabold
M. Siebers
Ute Schmid
31
14
0
15 Jun 2021
A unified logical framework for explanations in classifier systems
Xinghan Liu
E. Lorini
25
12
0
30 May 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
34
184
0
15 May 2021
Contrastive Explanations for Explaining Model Adaptations
André Artelt
Fabian Hinder
Valerie Vaquet
Robert Feldhans
Barbara Hammer
57
4
0
06 Apr 2021
Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice
David S. Watson
Limor Gultchin
Ankur Taly
Luciano Floridi
22
63
0
27 Mar 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
24
105
0
22 Mar 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
37
55
0
18 Mar 2021
Generating Interpretable Counterfactual Explanations By Implicit Minimisation of Epistemic and Aleatoric Uncertainties
Lisa Schut
Oscar Key
R. McGrath
Luca Costabello
Bogdan Sacaleanu
Medb Corcoran
Y. Gal
CML
26
47
0
16 Mar 2021
Explaining Network Intrusion Detection System Using Explainable AI Framework
Shraddha Mane
Dattaraj J. Rao
AAML
33
69
0
12 Mar 2021
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms
Miguel Á. Carreira-Perpiñán
Suryabhan Singh Hada
CML
AAML
18
33
0
01 Mar 2021
If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify in the Evaluation of Counterfactual XAI Techniques
Mark T. Keane
Eoin M. Kenny
Eoin Delaney
Barry Smyth
CML
27
146
0
26 Feb 2021
Explaining the Black-box Smoothly- A Counterfactual Approach
Junyu Chen
Yong Du
Yufan He
W. Paul Segars
Ye Li
MedIm
FAtt
67
100
0
11 Jan 2021
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
27
100
0
10 Nov 2020
Explainable AI meets Healthcare: A Study on Heart Disease Dataset
Devam Dave
Het Naik
Smiti Singhal
Pankesh Patel
25
63
0
06 Nov 2020
Contrastive Graph Neural Network Explanation
Lukas Faber
A. K. Moghaddam
Roger Wattenhofer
33
36
0
26 Oct 2020
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
26
164
0
20 Oct 2020
Explaining Chemical Toxicity using Missing Features
Kar Wai Lim
Bhanushee Sharma
Payel Das
Vijil Chenthamarakshan
J. Dordick
24
7
0
23 Sep 2020
On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning
Eoin M. Kenny
Mark T. Keane
28
99
0
10 Sep 2020
PermuteAttack: Counterfactual Explanation of Machine Learning Credit Scorecards
Masoud Hashemi
Ali Fathi
AAML
15
32
0
24 Aug 2020
Counterfactual Explanation Based on Gradual Construction for Deep Networks
Hong G Jung
Sin-Han Kang
Hee-Dong Kim
Dong-Ok Won
Seong-Whan Lee
OOD
FAtt
25
22
0
05 Aug 2020
Sequential Explanations with Mental Model-Based Policies
A. Yeung
Shalmali Joshi
Joseph Jay Williams
Frank Rudzicz
FAtt
LRM
36
15
0
17 Jul 2020
Previous
1
2
3
Next