ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.07623
  4. Cited By
Explanations based on the Missing: Towards Contrastive Explanations with
  Pertinent Negatives

Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives

21 February 2018
Amit Dhurandhar
Pin-Yu Chen
Ronny Luss
Chun-Chen Tu
Pai-Shun Ting
Karthikeyan Shanmugam
Payel Das
    FAtt
ArXivPDFHTML

Papers citing "Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives"

31 / 131 papers shown
Title
Monitoring and explainability of models in production
Monitoring and explainability of models in production
Janis Klaise
A. V. Looveren
Clive Cox
G. Vacanti
Alexandru Coca
43
49
0
13 Jul 2020
Fast Real-time Counterfactual Explanations
Fast Real-time Counterfactual Explanations
Yunxia Zhao
17
15
0
11 Jul 2020
Scientific Discovery by Generating Counterfactuals using Image
  Translation
Scientific Discovery by Generating Counterfactuals using Image Translation
Arunachalam Narayanaswamy
Subhashini Venugopalan
D. Webster
L. Peng
G. Corrado
...
Abigail E. Huang
Siva Balasubramanian
Michael P. Brenner
Phil Q. Nelson
A. Varadarajan
DiffM
MedIm
30
20
0
10 Jul 2020
Drug discovery with explainable artificial intelligence
Drug discovery with explainable artificial intelligence
José Jiménez-Luna
F. Grisoni
G. Schneider
30
627
0
01 Jul 2020
Counterfactual explanation of machine learning survival models
Counterfactual explanation of machine learning survival models
M. Kovalev
Lev V. Utkin
CML
OffRL
32
19
0
26 Jun 2020
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
50
112
0
11 Jun 2020
A Primer on Zeroth-Order Optimization in Signal Processing and Machine
  Learning
A Primer on Zeroth-Order Optimization in Signal Processing and Machine Learning
Sijia Liu
Pin-Yu Chen
B. Kailkhura
Gaoyuan Zhang
A. Hero III
P. Varshney
26
224
0
11 Jun 2020
Adversarial Attacks and Defenses: An Interpretation Perspective
Adversarial Attacks and Defenses: An Interpretation Perspective
Ninghao Liu
Mengnan Du
Ruocheng Guo
Huan Liu
Xia Hu
AAML
31
8
0
23 Apr 2020
SCOUT: Self-aware Discriminant Counterfactual Explanations
SCOUT: Self-aware Discriminant Counterfactual Explanations
Pei Wang
Nuno Vasconcelos
FAtt
30
81
0
16 Apr 2020
Model Agnostic Multilevel Explanations
Model Agnostic Multilevel Explanations
Karthikeyan N. Ramamurthy
B. Vinzamuri
Yunfeng Zhang
Amit Dhurandhar
29
41
0
12 Mar 2020
Learning Global Transparent Models Consistent with Local Contrastive
  Explanations
Learning Global Transparent Models Consistent with Local Contrastive Explanations
Tejaswini Pedapati
Avinash Balakrishnan
Karthikeyan Shanmugam
Amit Dhurandhar
FAtt
22
0
0
19 Feb 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
24
337
0
14 Feb 2020
Convex Density Constraints for Computing Plausible Counterfactual
  Explanations
Convex Density Constraints for Computing Plausible Counterfactual Explanations
André Artelt
Barbara Hammer
19
47
0
12 Feb 2020
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven,
  AI-Enabled Medical Imaging Analysis
CheXplain: Enabling Physicians to Explore and UnderstandData-Driven, AI-Enabled Medical Imaging Analysis
Yao Xie
Melody Chen
David Kao
Ge Gao
Xiang Ánthony' Chen
31
126
0
15 Jan 2020
Questioning the AI: Informing Design Practices for Explainable AI User
  Experiences
Questioning the AI: Informing Design Practices for Explainable AI User Experiences
Q. V. Liao
D. Gruen
Sarah Miller
52
702
0
08 Jan 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
28
206
0
06 Dec 2019
Automated Dependence Plots
Automated Dependence Plots
David I. Inouye
Liu Leqi
Joon Sik Kim
Bryon Aragam
Pradeep Ravikumar
12
1
0
02 Dec 2019
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan Ö. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
122
297
0
17 Oct 2019
Counterfactual States for Atari Agents via Generative Deep Learning
Counterfactual States for Atari Agents via Generative Deep Learning
Matthew Lyle Olson
Lawrence Neal
Fuxin Li
Weng-Keen Wong
CML
21
29
0
27 Sep 2019
Interpreting Undesirable Pixels for Image Classification on Black-Box
  Models
Interpreting Undesirable Pixels for Image Classification on Black-Box Models
Sin-Han Kang
Hong G Jung
Seong-Whan Lee
FAtt
19
3
0
27 Sep 2019
X-ToM: Explaining with Theory-of-Mind for Gaining Justified Human Trust
X-ToM: Explaining with Theory-of-Mind for Gaining Justified Human Trust
Arjun Reddy Akula
Changsong Liu
Sari Saba-Sadiya
Hongjing Lu
S. Todorovic
J. Chai
Song-Chun Zhu
24
18
0
15 Sep 2019
Interpretable Counterfactual Explanations Guided by Prototypes
Interpretable Counterfactual Explanations Guided by Prototypes
A. V. Looveren
Janis Klaise
FAtt
29
380
0
03 Jul 2019
Incorporating Priors with Feature Attribution on Text Classification
Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu
Besim Avci
FAtt
FaML
36
120
0
19 Jun 2019
Model Agnostic Contrastive Explanations for Structured Data
Model Agnostic Contrastive Explanations for Structured Data
Amit Dhurandhar
Tejaswini Pedapati
Avinash Balakrishnan
Pin-Yu Chen
Karthikeyan Shanmugam
Ruchi Puri
FAtt
25
82
0
31 May 2019
Explainability Techniques for Graph Convolutional Networks
Explainability Techniques for Graph Convolutional Networks
Federico Baldassarre
Hossein Azizpour
GNN
FAtt
33
264
0
31 May 2019
Leveraging Latent Features for Local Explanations
Leveraging Latent Features for Local Explanations
Ronny Luss
Pin-Yu Chen
Amit Dhurandhar
P. Sattigeri
Yunfeng Zhang
Karthikeyan Shanmugam
Chun-Chen Tu
FAtt
54
37
0
29 May 2019
Contrastive Explanation: A Structural-Model Approach
Contrastive Explanation: A Structural-Model Approach
Tim Miller
CML
16
166
0
07 Nov 2018
Generating Counterfactual Explanations with Natural Language
Generating Counterfactual Explanations with Natural Language
Lisa Anne Hendricks
Ronghang Hu
Trevor Darrell
Zeynep Akata
FAtt
23
99
0
26 Jun 2018
Contrastive Explanations with Local Foil Trees
Contrastive Explanations with Local Foil Trees
J. V. D. Waa
M. Robeer
J. Diggelen
Matthieu J. S. Brinkhuis
Mark Antonius Neerincx
FAtt
24
82
0
19 Jun 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic
  Corrections
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
27
63
0
21 Feb 2018
Methods for Interpreting and Understanding Deep Neural Networks
Methods for Interpreting and Understanding Deep Neural Networks
G. Montavon
Wojciech Samek
K. Müller
FaML
234
2,238
0
24 Jun 2017
Previous
123