Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05799
Cited By
v1
v2
v3 (latest)
Horovod: fast and easy distributed deep learning in TensorFlow
15 February 2018
Alexander Sergeev
Mike Del Balso
Re-assign community
ArXiv (abs)
PDF
HTML
Github (14494★)
Papers citing
"Horovod: fast and easy distributed deep learning in TensorFlow"
50 / 454 papers shown
Title
Large-scale Neural Solvers for Partial Differential Equations
Patrick Stiller
Friedrich Bethke
M. Böhme
R. Pausch
Sunna Torge
A. Debus
J. Vorberger
Michael Bussmann
Nico Hoffmann
AI4CE
73
26
0
08 Sep 2020
S-SGD: Symmetrical Stochastic Gradient Descent with Weight Noise Injection for Reaching Flat Minima
Wonyong Sung
Iksoo Choi
Jinhwan Park
Seokhyun Choi
Sungho Shin
ODL
58
7
0
05 Sep 2020
Looking for change? Roll the Dice and demand Attention
F. Diakogiannis
F. Waldner
P. Caccetta
121
68
0
04 Sep 2020
Pollux: Co-adaptive Cluster Scheduling for Goodput-Optimized Deep Learning
Aurick Qiao
Sang Keun Choe
Suhas Jayaram Subramanya
Willie Neiswanger
Qirong Ho
Hao Zhang
G. Ganger
Eric Xing
VLM
77
183
0
27 Aug 2020
Accuracy and Performance Comparison of Video Action Recognition Approaches
Matthew Hutchinson
S. Samsi
William Arcand
David Bestor
Bill Bergeron
...
Andrew Prout
Antonio Rosa
Albert Reuther
Charles Yee
V. Gadepally
42
5
0
20 Aug 2020
Synthesizing Optimal Collective Algorithms
Zixian Cai
Zhengyang Liu
Saeed Maleki
Madan Musuvathi
Todd Mytkowicz
Jacob Nelson
Olli Saarikivi
GNN
84
61
0
19 Aug 2020
Domain-specific Communication Optimization for Distributed DNN Training
Hao Wang
Jingrong Chen
Xinchen Wan
Han Tian
Jiacheng Xia
Gaoxiong Zeng
Weiyan Wang
Kai Chen
Wei Bai
Junchen Jiang
AI4CE
26
16
0
16 Aug 2020
Addressing Class Imbalance in Federated Learning
Lixu Wang
Shichao Xu
Tianlin Li
Qi Zhu
FedML
67
18
0
14 Aug 2020
The Sockeye 2 Neural Machine Translation Toolkit at AMTA 2020
Tobias Domhan
Michael J. Denkowski
David Vilar
Xing Niu
Felix Hieber
Kenneth Heafield
69
52
0
11 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
84
112
0
10 Aug 2020
Temporal Context Aggregation for Video Retrieval with Contrastive Learning
Jie Shao
Xin Wen
Bingchen Zhao
Xiangyang Xue
AI4TS
93
4
0
04 Aug 2020
Flower: A Friendly Federated Learning Research Framework
Daniel J. Beutel
Taner Topal
Akhil Mathur
Xinchi Qiu
Javier Fernandez-Marques
...
Lorenzo Sani
Kwing Hei Li
Titouan Parcollet
Pedro Porto Buarque de Gusmão
Nicholas D. Lane
FedML
158
825
0
28 Jul 2020
HeAT -- a Distributed and GPU-accelerated Tensor Framework for Data Analytics
Markus Goetz
D. Coquelin
Charlotte Debus
K. Krajsek
C. Comito
...
Michael Tarnawa
Simon Hanselmann
M. Siggel
A. Basermann
Achim Streit
32
9
0
27 Jul 2020
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
269
578
0
27 Jul 2020
CSER: Communication-efficient SGD with Error Reset
Cong Xie
Shuai Zheng
Oluwasanmi Koyejo
Indranil Gupta
Mu Li
Yanghua Peng
108
40
0
26 Jul 2020
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism
Yosuke Oyama
N. Maruyama
Nikoli Dryden
Erin McCarthy
P. Harrington
J. Balewski
Satoshi Matsuoka
Peter Nugent
B. Van Essen
3DV
AI4CE
71
37
0
25 Jul 2020
Deep Generative Models that Solve PDEs: Distributed Computing for Training Large Data-Free Models
Sergio Botelho
Ameya Joshi
Biswajit Khara
Soumik Sarkar
Chinmay Hegde
Santi S. Adavani
Baskar Ganapathysubramanian
AI4CE
52
6
0
24 Jul 2020
Computational Causal Inference
Jeffrey Wong
CML
AI4CE
44
11
0
21 Jul 2020
High Performance Data Engineering Everywhere
Chathura Widanage
Niranda Perera
V. Abeykoon
Supun Kamburugamuve
Thejaka Amila Kanewala
Hasara Maithree
P. Wickramasinghe
A. Uyar
Gurhan Gunduz
Geoffrey C. Fox
38
18
0
19 Jul 2020
HyperTune: Dynamic Hyperparameter Tuning For Efficient Distribution of DNN Training Over Heterogeneous Systems
Ali Heydarigorji
Siavash Rezaei
Mahdi Torabzadehkashi
Hossein Bobarshad
V. Alves
Pai H. Chou
82
14
0
16 Jul 2020
ProtTrans: Towards Cracking the Language of Life's Code Through Self-Supervised Deep Learning and High Performance Computing
Ahmed Elnaggar
M. Heinzinger
Christian Dallago
Ghalia Rehawi
Yu Wang
...
Tamas B. Fehér
Christoph Angerer
Martin Steinegger
D. Bhowmik
B. Rost
DRL
89
968
0
13 Jul 2020
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
Shiqing Fan
Yi Rong
Chen Meng
Zongyan Cao
Siyu Wang
...
Jun Yang
Lixue Xia
Lansong Diao
Xiaoyong Liu
Wei Lin
96
242
0
02 Jul 2020
Convolutional Neural Network Training with Distributed K-FAC
J. G. Pauloski
Zhao Zhang
Lei Huang
Weijia Xu
Ian Foster
59
31
0
01 Jul 2020
Shuffle-Exchange Brings Faster: Reduce the Idle Time During Communication for Decentralized Neural Network Training
Xiang Yang
FedML
20
2
0
01 Jul 2020
PyTorch Distributed: Experiences on Accelerating Data Parallel Training
Shen Li
Yanli Zhao
R. Varma
Omkar Salpekar
P. Noordhuis
...
Adam Paszke
Jeff Smith
Brian Vaughan
Pritam Damania
Soumith Chintala
OOD
MoE
80
190
0
28 Jun 2020
Microstructure Generation via Generative Adversarial Network for Heterogeneous, Topologically Complex 3D Materials
Tim Hsu
W. Epting
Hokon Kim
H. Abernathy
Gregory A. Hackett
A. Rollett
P. Salvador
Elizabeth A. Holm
35
84
0
22 Jun 2020
Is Network the Bottleneck of Distributed Training?
Zhen Zhang
Chaokun Chang
Yanghua Peng
Yida Wang
R. Arora
Xin Jin
89
71
0
17 Jun 2020
Improving accuracy and speeding up Document Image Classification through parallel systems
Javier Ferrando
J. L. Domínguez
Jordi Torres
Raul Garcia
David García
Daniel Garrido
J. Cortada
M. Valero
119
26
0
16 Jun 2020
FinBERT: A Pretrained Language Model for Financial Communications
Yi Yang
Mark Christopher Siy Uy
Allen H Huang
AIFin
AI4CE
85
238
0
15 Jun 2020
O(1) Communication for Distributed SGD through Two-Level Gradient Averaging
Subhadeep Bhattacharya
Weikuan Yu
Fahim Chowdhury
FedML
26
2
0
12 Jun 2020
Hierarchical, rotation-equivariant neural networks to select structural models of protein complexes
Stephan Eismann
Raphael J. L. Townshend
Nathaniel Thomas
Milind Jagota
Bowen Jing
R. Dror
50
8
0
05 Jun 2020
A Linear Algebraic Approach to Model Parallelism in Deep Learning
Russell J. Hewett
Thomas J. Grady
FedML
47
16
0
04 Jun 2020
A Scalable and Cloud-Native Hyperparameter Tuning System
Johnu George
Ce Gao
Richard Liu
Hou Gang Liu
Yuan Tang
Ramdoot Pydipaty
Amit Kumar Saha
17
13
0
03 Jun 2020
Parallelizing Machine Learning as a Service for the End-User
Daniela Loreti
Marco Lippi
Paolo Torroni
FedML
52
9
0
28 May 2020
HetPipe: Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined Model Parallelism and Data Parallelism
Jay H. Park
Gyeongchan Yun
Chang Yi
N. T. Nguyen
Seungmin Lee
Jaesik Choi
S. Noh
Young-ri Choi
MoE
89
134
0
28 May 2020
A Comparative Study of Machine Learning Models for Tabular Data Through Challenge of Monitoring Parkinson's Disease Progression Using Voice Recordings
Mohammadreza Iman
Amy Giuntini
H. Arabnia
Khaled Rasheed
28
2
0
27 May 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
75
4
0
23 May 2020
Deploying Scientific AI Networks at Petaflop Scale on Secure Large Scale HPC Production Systems with Containers
D. Brayford
S. Vallecorsa
48
8
0
20 May 2020
Tropical and Extratropical Cyclone Detection Using Deep Learning
Christina Kumler-Bonfanti
J. Stewart
D. Hall
M. Govett
36
37
0
18 May 2020
Scaling-up Distributed Processing of Data Streams for Machine Learning
M. Nokleby
Haroon Raja
W. Bajwa
69
15
0
18 May 2020
OD-SGD: One-step Delay Stochastic Gradient Descent for Distributed Training
Yemao Xu
Dezun Dong
Weixia Xu
Xiangke Liao
47
7
0
14 May 2020
Benchmark Tests of Convolutional Neural Network and Graph Convolutional Network on HorovodRunner Enabled Spark Clusters
Jing Pan
Wendao Liu
Jing Zhou
GNN
BDL
25
2
0
12 May 2020
Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging
Shigang Li
Tal Ben-Nun
Giorgi Nadiradze
Salvatore Di Girolamo
Nikoli Dryden
Dan Alistarh
Torsten Hoefler
75
15
0
30 Apr 2020
Caramel: Accelerating Decentralized Distributed Deep Learning with Computation Scheduling
Sayed Hadi Hashemi
Sangeetha Abdu Jyothi
Brighten Godfrey
R. Campbell
34
2
0
29 Apr 2020
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training with Auto-Parallelism
Zhenkun Cai
Kaihao Ma
Xiao Yan
Yidi Wu
Yuzhen Huang
James Cheng
Teng Su
F. Yu
66
45
0
16 Apr 2020
Characterizing and Modeling Distributed Training with Transient Cloud GPU Servers
Shijian Li
R. Walls
Tian Guo
55
23
0
07 Apr 2020
Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods
Jiale Zhi
Rui Wang
Jeff Clune
Kenneth O. Stanley
OffRL
72
12
0
25 Mar 2020
Convergence of Artificial Intelligence and High Performance Computing on NSF-supported Cyberinfrastructure
Eliu A. Huerta
Asad Khan
Edward Davis
Colleen Bushell
W. Gropp
...
S. Koric
William T. C. Kramer
Brendan McGinty
Kenton McHenry
Aaron Saxton
AI4CE
107
45
0
18 Mar 2020
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
123
12
0
06 Mar 2020
Do optimization methods in deep learning applications matter?
Buse Melis Özyildirim
Mariam Kiran
33
11
0
28 Feb 2020
Previous
1
2
3
...
10
6
7
8
9
Next