Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05799
Cited By
Horovod: fast and easy distributed deep learning in TensorFlow
15 February 2018
Alexander Sergeev
Mike Del Balso
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Horovod: fast and easy distributed deep learning in TensorFlow"
50 / 174 papers shown
Title
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
36
57
0
21 Jan 2021
SceneGen: Learning to Generate Realistic Traffic Scenes
Shuhan Tan
K. Wong
Shenlong Wang
S. Manivasagam
Mengye Ren
R. Urtasun
26
100
0
16 Jan 2021
NeurST: Neural Speech Translation Toolkit
Chengqi Zhao
Mingxuan Wang
Qianqian Dong
Rong Ye
Lei Li
30
32
0
18 Dec 2020
Data optimization for large batch distributed training of deep neural networks
Shubhankar Gahlot
Junqi Yin
Mallikarjun Shankar
21
1
0
16 Dec 2020
A Study of Checkpointing in Large Scale Training of Deep Neural Networks
Elvis Rojas
A. Kahira
Esteban Meneses
L. Bautista-Gomez
Rosa M. Badia
29
22
0
01 Dec 2020
Protein model quality assessment using rotation-equivariant, hierarchical neural networks
Stephan Eismann
Patricia Suriana
Bowen Jing
Raphael J. L. Townshend
R. Dror
9
13
0
27 Nov 2020
TLeague: A Framework for Competitive Self-Play based Distributed Multi-Agent Reinforcement Learning
Peng Sun
Jiechao Xiong
Lei Han
Xinghai Sun
Shuxing Li
Jiawei Xu
Meng Fang
Zhengyou Zhang
OffRL
LRM
33
19
0
25 Nov 2020
Integrating Deep Learning in Domain Sciences at Exascale
Rick Archibald
E. Chow
E. DÁzevedo
Jack J. Dongarra
M. Eisenbach
...
Florent Lopez
Daniel Nichols
S. Tomov
Kwai Wong
Junqi Yin
PINN
23
5
0
23 Nov 2020
A Novel Memory-Efficient Deep Learning Training Framework via Error-Bounded Lossy Compression
Sian Jin
Guanpeng Li
Shuaiwen Leon Song
Dingwen Tao
AI4CE
29
12
0
18 Nov 2020
Context-Aware Drive-thru Recommendation Service at Fast Food Restaurants
Luyang Wang
Kai-Qi Huang
Jiao Wang
Shengsheng Huang
J. Dai
Zhuang Yue
22
1
0
13 Oct 2020
DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs
Da Zheng
Chao Ma
Minjie Wang
Jinjing Zhou
Qidong Su
Xiang Song
Quan Gan
Zheng-Wei Zhang
George Karypis
FedML
GNN
27
243
0
11 Oct 2020
Accelerating Finite-temperature Kohn-Sham Density Functional Theory with Deep Neural Networks
J. Ellis
Lenz Fiedler
G. Popoola
N. Modine
J. A. Stephens
A. Thompson
A. Cangi
S. Rajamanickam
AI4CE
32
40
0
10 Oct 2020
A Tensor Compiler for Unified Machine Learning Prediction Serving
Supun Nakandala Karla Saur
Karla Saur
Gyeong-In Yu
Konstantinos Karanasos
Carlo Curino
Markus Weimer
Matteo Interlandi
37
53
0
09 Oct 2020
Towards a Scalable and Distributed Infrastructure for Deep Learning Applications
Bita Hasheminezhad
S. Shirzad
Nanmiao Wu
Patrick Diehl
Hannes Schulz
Hartmut Kaiser
GNN
AI4CE
32
4
0
06 Oct 2020
VirtualFlow: Decoupling Deep Learning Models from the Underlying Hardware
Andrew Or
Haoyu Zhang
M. Freedman
19
9
0
20 Sep 2020
Looking for change? Roll the Dice and demand Attention
F. Diakogiannis
F. Waldner
P. Caccetta
23
66
0
04 Sep 2020
Accuracy and Performance Comparison of Video Action Recognition Approaches
Matthew Hutchinson
S. Samsi
William Arcand
David Bestor
Bill Bergeron
...
Andrew Prout
Antonio Rosa
Albert Reuther
Charles Yee
V. Gadepally
16
5
0
20 Aug 2020
Synthesizing Optimal Collective Algorithms
Zixian Cai
Zhengyang Liu
Saeed Maleki
Madan Musuvathi
Todd Mytkowicz
Jacob Nelson
Olli Saarikivi
GNN
26
60
0
19 Aug 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
25
110
0
10 Aug 2020
Temporal Context Aggregation for Video Retrieval with Contrastive Learning
Jie Shao
Xin Wen
Bingchen Zhao
Xiangyang Xue
AI4TS
38
4
0
04 Aug 2020
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism
Yosuke Oyama
N. Maruyama
Nikoli Dryden
Erin McCarthy
P. Harrington
J. Balewski
Satoshi Matsuoka
Peter Nugent
B. Van Essen
3DV
AI4CE
37
37
0
25 Jul 2020
HyperTune: Dynamic Hyperparameter Tuning For Efficient Distribution of DNN Training Over Heterogeneous Systems
Ali Heydarigorji
Siavash Rezaei
Mahdi Torabzadehkashi
Hossein Bobarshad
V. Alves
Pai H. Chou
24
14
0
16 Jul 2020
DAPPLE: A Pipelined Data Parallel Approach for Training Large Models
Shiqing Fan
Yi Rong
Chen Meng
Zongyan Cao
Siyu Wang
...
Jun Yang
Lixue Xia
Lansong Diao
Xiaoyong Liu
Wei Lin
21
233
0
02 Jul 2020
Is Network the Bottleneck of Distributed Training?
Zhen Zhang
Chaokun Chang
Yanghua Peng
Yida Wang
R. Arora
Xin Jin
25
70
0
17 Jun 2020
FinBERT: A Pretrained Language Model for Financial Communications
Yi Yang
Mark Christopher Siy Uy
Allen H Huang
AIFin
AI4CE
28
231
0
15 Jun 2020
A Scalable and Cloud-Native Hyperparameter Tuning System
Johnu George
Ce Gao
Richard Liu
Hou Gang Liu
Yuan Tang
Ramdoot Pydipaty
Amit Kumar Saha
13
13
0
03 Jun 2020
HetPipe: Enabling Large DNN Training on (Whimpy) Heterogeneous GPU Clusters through Integration of Pipelined Model Parallelism and Data Parallelism
Jay H. Park
Gyeongchan Yun
Chang Yi
N. T. Nguyen
Seungmin Lee
Jaesik Choi
S. Noh
Young-ri Choi
MoE
25
129
0
28 May 2020
Bayesian Neural Networks at Scale: A Performance Analysis and Pruning Study
Himanshu Sharma
Elise Jennings
BDL
27
3
0
23 May 2020
Deploying Scientific AI Networks at Petaflop Scale on Secure Large Scale HPC Production Systems with Containers
D. Brayford
S. Vallecorsa
14
8
0
20 May 2020
Tropical and Extratropical Cyclone Detection Using Deep Learning
Christina Kumler-Bonfanti
J. Stewart
D. Hall
M. Govett
24
37
0
18 May 2020
TensorOpt: Exploring the Tradeoffs in Distributed DNN Training with Auto-Parallelism
Zhenkun Cai
Kaihao Ma
Xiao Yan
Yidi Wu
Yuzhen Huang
James Cheng
Teng Su
F. Yu
24
42
0
16 Apr 2020
Characterizing and Modeling Distributed Training with Transient Cloud GPU Servers
Shijian Li
R. Walls
Tian Guo
31
23
0
07 Apr 2020
Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods
Jiale Zhi
Rui Wang
Jeff Clune
Kenneth O. Stanley
OffRL
30
12
0
25 Mar 2020
Communication optimization strategies for distributed deep neural network training: A survey
Shuo Ouyang
Dezun Dong
Yemao Xu
Liquan Xiao
30
12
0
06 Mar 2020
Communication Contention Aware Scheduling of Multiple Deep Learning Training Jobs
Qiang-qiang Wang
Shaoshuai Shi
Canhui Wang
Xiaowen Chu
26
13
0
24 Feb 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
29
327
0
22 Feb 2020
Hoplite: Efficient and Fault-Tolerant Collective Communication for Task-Based Distributed Systems
Siyuan Zhuang
Zhuohan Li
Danyang Zhuo
Stephanie Wang
Eric Liang
Robert Nishihara
Philipp Moritz
Ion Stoica
27
23
0
13 Feb 2020
Stochastic Weight Averaging in Parallel: Large-Batch Training that Generalizes Well
Vipul Gupta
S. Serrano
D. DeCoste
MoMe
38
55
0
07 Jan 2020
A Survey on Distributed Machine Learning
Joost Verbraeken
Matthijs Wolting
Jonathan Katzy
Jeroen Kloppenburg
Tim Verbelen
Jan S. Rellermeyer
OOD
42
692
0
20 Dec 2019
C2FNAS: Coarse-to-Fine Neural Architecture Search for 3D Medical Image Segmentation
Qihang Yu
Dong Yang
H. Roth
Yutong Bai
Yixiao Zhang
Alan Yuille
Daguang Xu
37
108
0
20 Dec 2019
Understanding Top-k Sparsification in Distributed Deep Learning
Shaoshuai Shi
Xiaowen Chu
Ka Chun Cheung
Simon See
30
95
0
20 Nov 2019
Label-similarity Curriculum Learning
Ürün Dogan
A. Deshmukh
Marcin Machura
Christian Igel
23
21
0
15 Nov 2019
Highly-scalable, physics-informed GANs for learning solutions of stochastic PDEs
Liu Yang
Sean Treichler
Thorsten Kurth
Keno Fischer
D. Barajas-Solano
...
Valentin Churavy
A. Tartakovsky
Michael Houston
P. Prabhat
George Karniadakis
AI4CE
47
38
0
29 Oct 2019
Parallelized Training of Restricted Boltzmann Machines using Markov-Chain Monte Carlo Methods
Pei Yang
S. Varadharajan
Lucas A. Wilson
Don D. Smith
John A. Lockman
Vineet Gundecha
Quy Ta
BDL
17
1
0
14 Oct 2019
Blink: Fast and Generic Collectives for Distributed ML
Guanhua Wang
Shivaram Venkataraman
Amar Phanishayee
J. Thelin
Nikhil R. Devanur
Ion Stoica
VLM
17
136
0
11 Oct 2019
Distributed Learning of Deep Neural Networks using Independent Subnet Training
John Shelton Hyatt
Cameron R. Wolfe
Michael Lee
Yuxin Tang
Anastasios Kyrillidis
Christopher M. Jermaine
OOD
29
35
0
04 Oct 2019
Deep learning at scale for subgrid modeling in turbulent flows
Mathis Bode
M. Gauding
K. Kleinheinz
H. Pitsch
AI4CE
21
21
0
01 Oct 2019
Exascale Deep Learning for Scientific Inverse Problems
N. Laanait
Josh Romero
Junqi Yin
M. T. Young
Sean Treichler
V. Starchenko
A. Borisevich
Alexander Sergeev
Michael A. Matheson
FedML
BDL
35
29
0
24 Sep 2019
Distributed Deep Learning for Precipitation Nowcasting
S. Samsi
Christopher J. Mattioli
Mark S. Veillette
35
23
0
28 Aug 2019
Optimizing Multi-GPU Parallelization Strategies for Deep Learning Training
Saptadeep Pal
Eiman Ebrahimi
A. Zulfiqar
Yaosheng Fu
Victor Zhang
Szymon Migacz
D. Nellans
Puneet Gupta
36
55
0
30 Jul 2019
Previous
1
2
3
4
Next