Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.05668
Cited By
Model compression via distillation and quantization
15 February 2018
A. Polino
Razvan Pascanu
Dan Alistarh
MQ
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Model compression via distillation and quantization"
50 / 171 papers shown
Title
FedSynth: Gradient Compression via Synthetic Data in Federated Learning
Shengyuan Hu
Jack Goetz
Kshitiz Malik
Hongyuan Zhan
Zhe Liu
Yue Liu
DD
FedML
45
38
0
04 Apr 2022
Update Compression for Deep Neural Networks on the Edge
Bo Chen
A. Bakhshi
Gustavo E. A. P. A. Batista
Brian Ng
Tat-Jun Chin
31
17
0
09 Mar 2022
Deadwooding: Robust Global Pruning for Deep Neural Networks
Sawinder Kaur
Ferdinando Fioretto
Asif Salekin
32
4
0
10 Feb 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
32
4
0
03 Feb 2022
Iterative Activation-based Structured Pruning
Kaiqi Zhao
Animesh Jain
Ming Zhao
42
0
0
22 Jan 2022
Enabling Deep Learning on Edge Devices through Filter Pruning and Knowledge Transfer
Kaiqi Zhao
Yitao Chen
Ming Zhao
27
3
0
22 Jan 2022
Ensemble Transformer for Efficient and Accurate Ranking Tasks: an Application to Question Answering Systems
Yoshitomo Matsubara
Luca Soldaini
Eric Lind
Alessandro Moschitti
37
6
0
15 Jan 2022
Problem-dependent attention and effort in neural networks with applications to image resolution and model selection
Chris Rohlfs
34
4
0
05 Jan 2022
Data-Free Knowledge Transfer: A Survey
Yuang Liu
Wei Zhang
Jun Wang
Jianyong Wang
40
48
0
31 Dec 2021
Learning Robust and Lightweight Model through Separable Structured Transformations
Xian Wei
Yanhui Huang
Yang Xu
Mingsong Chen
Hai Lan
Yuanxiang Li
Zhongfeng Wang
Xuan Tang
OOD
24
0
0
27 Dec 2021
Multi-Modality Distillation via Learning the teacher's modality-level Gram Matrix
Peng Liu
24
0
0
21 Dec 2021
Illumination and Temperature-Aware Multispectral Networks for Edge-Computing-Enabled Pedestrian Detection
Yifan Zhuang
Ziyuan Pu
Jia Hu
Yinhai Wang
35
24
0
09 Dec 2021
Automatic Neural Network Pruning that Efficiently Preserves the Model Accuracy
Thibault Castells
Seul-Ki Yeom
3DV
23
3
0
18 Nov 2021
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment
Weixin Xu
Zipeng Feng
Shuangkang Fang
Song Yuan
Yi Yang
Shuchang Zhou
MQ
30
1
0
01 Nov 2021
Adaptive Distillation: Aggregating Knowledge from Multiple Paths for Efficient Distillation
Sumanth Chennupati
Mohammad Mahdi Kamani
Zhongwei Cheng
Lin Chen
35
4
0
19 Oct 2021
ProgFed: Effective, Communication, and Computation Efficient Federated Learning by Progressive Training
Hui-Po Wang
Sebastian U. Stich
Yang He
Mario Fritz
FedML
AI4CE
36
48
0
11 Oct 2021
Visualizing the embedding space to explain the effect of knowledge distillation
Hyun Seung Lee
C. Wallraven
31
1
0
09 Oct 2021
Generative Optimization Networks for Memory Efficient Data Generation
Shreshth Tuli
Shikhar Tuli
G. Casale
N. Jennings
33
12
0
06 Oct 2021
Auto-Split: A General Framework of Collaborative Edge-Cloud AI
Amin Banitalebi-Dehkordi
Naveen Vedula
J. Pei
Fei Xia
Lanjun Wang
Yong Zhang
22
89
0
30 Aug 2021
DKM: Differentiable K-Means Clustering Layer for Neural Network Compression
Minsik Cho
Keivan Alizadeh Vahid
Saurabh N. Adya
Mohammad Rastegari
44
34
0
28 Aug 2021
Privacy-Preserving Machine Learning: Methods, Challenges and Directions
Runhua Xu
Nathalie Baracaldo
J. Joshi
32
99
0
10 Aug 2021
QuPeD: Quantized Personalization via Distillation with Applications to Federated Learning
Kaan Ozkara
Navjot Singh
Deepesh Data
Suhas Diggavi
FedML
MQ
29
56
0
29 Jul 2021
Follow Your Path: a Progressive Method for Knowledge Distillation
Wenxian Shi
Yuxuan Song
Hao Zhou
Bohan Li
Lei Li
17
15
0
20 Jul 2021
DANCE: DAta-Network Co-optimization for Efficient Segmentation Model Training and Inference
Chaojian Li
Wuyang Chen
Yuchen Gu
Tianlong Chen
Yonggan Fu
Zhangyang Wang
Yingyan Lin
35
0
0
16 Jul 2021
Training Compact CNNs for Image Classification using Dynamic-coded Filter Fusion
Mingbao Lin
Bohong Chen
Rongrong Ji
Rongrong Ji
VLM
35
23
0
14 Jul 2021
Improving the Efficiency of Transformers for Resource-Constrained Devices
Hamid Tabani
Ajay Balasubramaniam
Shabbir Marzban
Elahe Arani
Bahram Zonooz
46
20
0
30 Jun 2021
Efficient Deep Learning: A Survey on Making Deep Learning Models Smaller, Faster, and Better
Gaurav Menghani
VLM
MedIm
23
367
0
16 Jun 2021
Pre-Trained Models: Past, Present and Future
Xu Han
Zhengyan Zhang
Ning Ding
Yuxian Gu
Xiao Liu
...
Jie Tang
Ji-Rong Wen
Jinhui Yuan
Wayne Xin Zhao
Jun Zhu
AIFin
MQ
AI4MH
60
818
0
14 Jun 2021
BoolNet: Minimizing The Energy Consumption of Binary Neural Networks
Nianhui Guo
Joseph Bethge
Haojin Yang
Kai Zhong
Xuefei Ning
Christoph Meinel
Yu Wang
MQ
29
11
0
13 Jun 2021
Rethinking Transfer Learning for Medical Image Classification
Le Peng
Hengyue Liang
Gaoxiang Luo
Taihui Li
Ju Sun
VLM
LM&MA
16
5
0
09 Jun 2021
RBNN: Memory-Efficient Reconfigurable Deep Binary Neural Network with IP Protection for Internet of Things
Huming Qiu
Hua Ma
Zhi-Li Zhang
Yifeng Zheng
Anmin Fu
Pan Zhou
Yansong Gao
Derek Abbott
S. Al-Sarawi
MQ
24
9
0
09 May 2021
Self-paced Resistance Learning against Overfitting on Noisy Labels
Xiaoshuang Shi
Zhenhua Guo
Fuyong Xing
Yun Liang
Xiaofeng Zhu
NoLa
23
20
0
07 May 2021
Alternate Model Growth and Pruning for Efficient Training of Recommendation Systems
Xiaocong Du
Bhargav Bhushanam
Jiecao Yu
Dhruv Choudhary
Tianxiang Gao
Sherman Wong
Louis Feng
Jongsoo Park
Yu Cao
A. Kejariwal
34
5
0
04 May 2021
Differentiable Model Compression via Pseudo Quantization Noise
Alexandre Défossez
Yossi Adi
Gabriel Synnaeve
DiffM
MQ
26
48
0
20 Apr 2021
Compact CNN Structure Learning by Knowledge Distillation
Waqar Ahmed
Andrea Zunino
Pietro Morerio
Vittorio Murino
38
5
0
19 Apr 2021
"BNN - BN = ?": Training Binary Neural Networks without Batch Normalization
Tianlong Chen
Zhenyu Zhang
Xu Ouyang
Zechun Liu
Zhiqiang Shen
Zhangyang Wang
MQ
46
36
0
16 Apr 2021
Training Multi-bit Quantized and Binarized Networks with A Learnable Symmetric Quantizer
Phuoc Pham
J. Abraham
Jaeyong Chung
MQ
53
11
0
01 Apr 2021
Student Network Learning via Evolutionary Knowledge Distillation
Kangkai Zhang
Chunhui Zhang
Shikun Li
Dan Zeng
Shiming Ge
24
83
0
23 Mar 2021
CDFI: Compression-Driven Network Design for Frame Interpolation
Tianyu Ding
Luming Liang
Zhihui Zhu
Ilya Zharkov
29
93
0
18 Mar 2021
Learnable Companding Quantization for Accurate Low-bit Neural Networks
Kohei Yamamoto
MQ
36
64
0
12 Mar 2021
Environmental Sound Classification on the Edge: A Pipeline for Deep Acoustic Networks on Extremely Resource-Constrained Devices
Md Mohaimenuzzaman
Christoph Bergmeir
I. West
B. Meyer
22
41
0
05 Mar 2021
Diversifying Sample Generation for Accurate Data-Free Quantization
Xiangguo Zhang
Haotong Qin
Yifu Ding
Ruihao Gong
Qing Yan
Renshuai Tao
Yuhang Li
F. Yu
Xianglong Liu
MQ
58
94
0
01 Mar 2021
BSQ: Exploring Bit-Level Sparsity for Mixed-Precision Neural Network Quantization
Huanrui Yang
Lin Duan
Yiran Chen
Hai Helen Li
MQ
21
64
0
20 Feb 2021
An Information-Theoretic Justification for Model Pruning
Berivan Isik
Tsachy Weissman
Albert No
95
35
0
16 Feb 2021
SEED: Self-supervised Distillation For Visual Representation
Zhiyuan Fang
Jianfeng Wang
Lijuan Wang
Lei Zhang
Yezhou Yang
Zicheng Liu
SSL
247
190
0
12 Jan 2021
I-BERT: Integer-only BERT Quantization
Sehoon Kim
A. Gholami
Z. Yao
Michael W. Mahoney
Kurt Keutzer
MQ
107
345
0
05 Jan 2021
Auto-Agent-Distiller: Towards Efficient Deep Reinforcement Learning Agents via Neural Architecture Search
Y. Fu
Zhongzhi Yu
Yongan Zhang
Yingyan Lin
27
4
0
24 Dec 2020
Cross-Layer Distillation with Semantic Calibration
Defang Chen
Jian-Ping Mei
Yuan Zhang
Can Wang
Yan Feng
Chun-Yen Chen
FedML
45
288
0
06 Dec 2020
Parallel Blockwise Knowledge Distillation for Deep Neural Network Compression
Cody Blakeney
Xiaomin Li
Yan Yan
Ziliang Zong
53
40
0
05 Dec 2020
Bringing AI To Edge: From Deep Learning's Perspective
Di Liu
Hao Kong
Xiangzhong Luo
Weichen Liu
Ravi Subramaniam
54
116
0
25 Nov 2020
Previous
1
2
3
4
Next