ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05312
  4. Cited By
Learning Deep Disentangled Embeddings with the F-Statistic Loss
v1v2 (latest)

Learning Deep Disentangled Embeddings with the F-Statistic Loss

14 February 2018
Karl Ridgeway
Michael C. Mozer
    FedMLDRLCoGe
ArXiv (abs)PDFHTML

Papers citing "Learning Deep Disentangled Embeddings with the F-Statistic Loss"

40 / 140 papers shown
Title
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
Maja Pantic
Yannis Panagakis
GANDRL
68
17
0
09 Sep 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGeDRL
114
18
0
27 Aug 2020
WeLa-VAE: Learning Alternative Disentangled Representations Using Weak
  Labels
WeLa-VAE: Learning Alternative Disentangled Representations Using Weak Labels
Vasilis Margonis
Athanasios Davvetas
I. Klampanos
CoGeDRLCML
40
3
0
22 Aug 2020
Linear Disentangled Representations and Unsupervised Action Estimation
Linear Disentangled Representations and Unsupervised Action Estimation
Matthew Painter
Jonathon S. Hare
Adam Prugel-Bennett
CoGeDRL
70
20
0
18 Aug 2020
Metric Learning vs Classification for Disentangled Music Representation
  Learning
Metric Learning vs Classification for Disentangled Music Representation Learning
Jongpil Lee
Nicholas J. Bryan
Justin Salamon
Zeyu Jin
Juhan Nam
DMLDRL
43
32
0
09 Aug 2020
dMelodies: A Music Dataset for Disentanglement Learning
dMelodies: A Music Dataset for Disentanglement Learning
Ashis Pati
Siddharth Gururani
Alexander Lerch
CoGeDRL
63
10
0
29 Jul 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OODDRL
89
21
0
28 Jul 2020
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGeDRL
83
27
0
25 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
148
134
0
21 Jul 2020
PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders
PRI-VAE: Principle-of-Relevant-Information Variational Autoencoders
Yanjun Li
Shujian Yu
José C. Príncipe
Xiaolin Li
D. Wu
DRL
65
7
0
13 Jul 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
103
73
0
24 Jun 2020
Disentangling by Subspace Diffusion
Disentangling by Subspace Diffusion
David Pfau
I. Higgins
Aleksandar Botev
S. Racanière
DiffMDRL
89
37
0
23 Jun 2020
Structure by Architecture: Structured Representations without
  Regularization
Structure by Architecture: Structured Representations without Regularization
Felix Leeb
Giulia Lanzillotta
Yashas Annadani
M. Besserve
Stefan Bauer
Bernhard Schölkopf
OODCML
96
8
0
14 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGeDRL
123
46
0
09 Jun 2020
Global Distance-distributions Separation for Unsupervised Person
  Re-identification
Global Distance-distributions Separation for Unsupervised Person Re-identification
Xin Jin
Cuiling Lan
Wenjun Zeng
Zhibo Chen
OOD
99
69
0
01 Jun 2020
Attribute-based Regularization of Latent Spaces for Variational
  Auto-Encoders
Attribute-based Regularization of Latent Spaces for Variational Auto-Encoders
Ashis Pati
Alexander Lerch
DRL
82
3
0
11 Apr 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
181
73
0
06 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGeOODDRL
287
321
0
07 Feb 2020
Disentangled Representation Learning with Wasserstein Total Correlation
Disentangled Representation Learning with Wasserstein Total Correlation
Yijun Xiao
William Yang Wang
OODDRL
65
12
0
30 Dec 2019
Instance-Invariant Domain Adaptive Object Detection via Progressive
  Disentanglement
Instance-Invariant Domain Adaptive Object Detection via Progressive Disentanglement
Aming Wu
Yahong Han
Linchao Zhu
Yi Yang
81
4
0
20 Nov 2019
Gated Variational AutoEncoders: Incorporating Weak Supervision to
  Encourage Disentanglement
Gated Variational AutoEncoders: Incorporating Weak Supervision to Encourage Disentanglement
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CoGeDRL
66
9
0
15 Nov 2019
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGeDRL
132
139
0
22 Oct 2019
Mutual Information-driven Subject-invariant and Class-relevant Deep
  Representation Learning in BCI
Mutual Information-driven Subject-invariant and Class-relevant Deep Representation Learning in BCI
Eunjin Jeon
Wonjun Ko
Jee Seok Yoon
Heung-Il Suk
OOD
63
0
0
17 Oct 2019
Stochastic Prototype Embeddings
Stochastic Prototype Embeddings
Tyler R. Scott
Karl Ridgeway
Michael C. Mozer
BDLUQCV
61
14
0
25 Sep 2019
Theory and Evaluation Metrics for Learning Disentangled Representations
Theory and Evaluation Metrics for Learning Disentangled Representations
Kien Do
T. Tran
CoGeDRL
76
96
0
26 Aug 2019
Demystifying Inter-Class Disentanglement
Demystifying Inter-Class Disentanglement
Aviv Gabbay
Yedid Hoshen
DRL
65
56
0
27 Jun 2019
On the Transfer of Inductive Bias from Simulation to the Real World: a
  New Disentanglement Dataset
On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset
Muhammad Waleed Gondal
Manuel Wüthrich
Ðorðe Miladinovic
Francesco Locatello
M. Breidt
V. Volchkov
J. Akpo
Olivier Bachem
Bernhard Schölkopf
Stefan Bauer
OODDRL
127
139
0
07 Jun 2019
On the Fairness of Disentangled Representations
On the Fairness of Disentangled Representations
Francesco Locatello
G. Abbati
Tom Rainforth
Stefan Bauer
Bernhard Schölkopf
Olivier Bachem
FaMLDRL
81
227
0
31 May 2019
Unsupervised Model Selection for Variational Disentangled Representation
  Learning
Unsupervised Model Selection for Variational Disentangled Representation Learning
Sunny Duan
Loic Matthey
Andre Saraiva
Nicholas Watters
Christopher P. Burgess
Alexander Lerchner
I. Higgins
OODDRL
105
80
0
29 May 2019
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Are Disentangled Representations Helpful for Abstract Visual Reasoning?
Sjoerd van Steenkiste
Francesco Locatello
Jürgen Schmidhuber
Olivier Bachem
110
210
0
29 May 2019
A Plug-in Method for Representation Factorization in Connectionist
  Models
A Plug-in Method for Representation Factorization in Connectionist Models
Jee Seok Yoon
Wonjun Ko
Heung-Il Suk
71
1
0
27 May 2019
Disentangling Factors of Variation Using Few Labels
Disentangling Factors of Variation Using Few Labels
Francesco Locatello
Michael Tschannen
Stefan Bauer
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
DRLCMLCoGe
107
124
0
03 May 2019
Multi-Object Representation Learning with Iterative Variational
  Inference
Multi-Object Representation Learning with Iterative Variational Inference
Klaus Greff
Raphael Lopez Kaufman
Rishabh Kabra
Nicholas Watters
Christopher P. Burgess
Daniel Zoran
Loic Matthey
M. Botvinick
Alexander Lerchner
OCLSSL
106
510
0
01 Mar 2019
Composition and decomposition of GANs
Composition and decomposition of GANs
Yeu-Chern Harn
Zhenghao Chen
V. Jojic
CoGeGAN
34
0
0
23 Jan 2019
Spatial Broadcast Decoder: A Simple Architecture for Learning
  Disentangled Representations in VAEs
Spatial Broadcast Decoder: A Simple Architecture for Learning Disentangled Representations in VAEs
Nicholas Watters
Loic Matthey
Christopher P. Burgess
Alexander Lerchner
CoGe
113
169
0
21 Jan 2019
Recent Advances in Autoencoder-Based Representation Learning
Recent Advances in Autoencoder-Based Representation Learning
Michael Tschannen
Olivier Bachem
Mario Lucic
OODSSLDRL
95
447
0
12 Dec 2018
Towards a Definition of Disentangled Representations
Towards a Definition of Disentangled Representations
I. Higgins
David Amos
David Pfau
S. Racanière
Loic Matthey
Danilo Jimenez Rezende
Alexander Lerchner
OCLDRL
157
481
0
05 Dec 2018
Challenging Common Assumptions in the Unsupervised Learning of
  Disentangled Representations
Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
205
1,476
0
29 Nov 2018
Robustly Disentangled Causal Mechanisms: Validating Deep Representations
  for Interventional Robustness
Robustly Disentangled Causal Mechanisms: Validating Deep Representations for Interventional Robustness
Raphael Suter
Ðorðe Miladinovic
Bernhard Schölkopf
Stefan Bauer
CMLOODDRL
161
163
0
31 Oct 2018
Adapted Deep Embeddings: A Synthesis of Methods for $k$-Shot Inductive
  Transfer Learning
Adapted Deep Embeddings: A Synthesis of Methods for kkk-Shot Inductive Transfer Learning
Tyler R. Scott
Karl Ridgeway
Michael C. Mozer
111
84
0
22 May 2018
Previous
123