ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.05312
  4. Cited By
Learning Deep Disentangled Embeddings with the F-Statistic Loss

Learning Deep Disentangled Embeddings with the F-Statistic Loss

14 February 2018
Karl Ridgeway
Michael C. Mozer
    FedML
    DRL
    CoGe
ArXivPDFHTML

Papers citing "Learning Deep Disentangled Embeddings with the F-Statistic Loss"

50 / 59 papers shown
Title
Analyzing Generative Models by Manifold Entropic Metrics
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
35
0
0
25 Oct 2024
Next state prediction gives rise to entangled, yet compositional
  representations of objects
Next state prediction gives rise to entangled, yet compositional representations of objects
Tankred Saanum
Luca M. Schulze Buschoff
Peter Dayan
Eric Schulz
OCL
CoGe
OOD
42
1
0
07 Oct 2024
Deciphering the Role of Representation Disentanglement: Investigating
  Compositional Generalization in CLIP Models
Deciphering the Role of Representation Disentanglement: Investigating Compositional Generalization in CLIP Models
Reza Abbasi
M. Rohban
M. Baghshah
CoGe
43
5
0
08 Jul 2024
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity
  for Abstract Visual Reasoning
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity for Abstract Visual Reasoning
Ruiqian Nai
Zixin Wen
Ji Li
Yuanzhi Li
Yang Gao
54
2
0
01 Mar 2024
Towards a Unified Framework of Contrastive Learning for Disentangled
  Representations
Towards a Unified Framework of Contrastive Learning for Disentangled Representations
Stefan Matthes
Zhiwei Han
Hao Shen
42
4
0
08 Nov 2023
Improving SCGAN's Similarity Constraint and Learning a Better
  Disentangled Representation
Improving SCGAN's Similarity Constraint and Learning a Better Disentangled Representation
Iman Yazdanpanah
Ali Eslamian
DRL
GAN
32
0
0
18 Oct 2023
Disentanglement Learning via Topology
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
60
2
0
24 Aug 2023
Attribute Regularized Soft Introspective VAE: Towards Cardiac Attribute Regularization Through MRI Domains
Maxime Di Folco
Cosmin I. Bercea
Julia A. Schnabel
33
0
0
24 Jul 2023
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set
  Alignment
Text-Video Retrieval with Disentangled Conceptualization and Set-to-Set Alignment
Peng Jin
Hao Li
Ze-Long Cheng
Jinfa Huang
Zhennan Wang
Li-ming Yuan
Chang-rui Liu
Jie Chen
45
33
0
20 May 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
40
3
0
11 May 2023
Visual Referential Games Further the Emergence of Disentangled
  Representations
Visual Referential Games Further the Emergence of Disentangled Representations
Kevin Denamganai
S. Missaoui
James Alfred Walker
OCL
CoGe
26
4
0
27 Apr 2023
Correcting Flaws in Common Disentanglement Metrics
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
42
3
0
05 Apr 2023
Disentangled Representation Learning
Disentangled Representation Learning
Xin Eric Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
42
79
0
21 Nov 2022
Neural Systematic Binder
Neural Systematic Binder
Gautam Singh
Yeongbin Kim
Sungjin Ahn
OCL
39
36
0
02 Nov 2022
DOT-VAE: Disentangling One Factor at a Time
DOT-VAE: Disentangling One Factor at a Time
Vaishnavi Patil
Matthew Evanusa
J. JáJá
CoGe
DRL
CML
23
1
0
19 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
41
33
0
13 Oct 2022
Auto-Encoding Goodness of Fit
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
51
1
0
12 Oct 2022
Interpretable Disentangled Parametrization of Measured BRDF with
  $β$-VAE
Interpretable Disentangled Parametrization of Measured BRDF with βββ-VAE
A. Benamira
Sachin Shah
S. Pattanaik
21
3
0
08 Aug 2022
Attri-VAE: attribute-based interpretable representations of medical
  images with variational autoencoders
Attri-VAE: attribute-based interpretable representations of medical images with variational autoencoders
Irem Cetin
Maialen Stephens
Oscar Camara
M. A. G. Ballester
DRL
51
39
0
20 Mar 2022
Symmetry-Based Representations for Artificial and Biological General
  Intelligence
Symmetry-Based Representations for Artificial and Biological General Intelligence
I. Higgins
S. Racanière
Danilo Jimenez Rezende
AI4CE
39
44
0
17 Mar 2022
Interpretable Molecular Graph Generation via Monotonic Constraints
Interpretable Molecular Graph Generation via Monotonic Constraints
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
68
19
0
28 Feb 2022
Explaining, Evaluating and Enhancing Neural Networks' Learned
  Representations
Explaining, Evaluating and Enhancing Neural Networks' Learned Representations
Marco Bertolini
Djork-Arné Clevert
F. Montanari
FAtt
19
5
0
18 Feb 2022
Right for the Right Latent Factors: Debiasing Generative Models via
  Disentanglement
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
36
3
0
01 Feb 2022
Latte: Cross-framework Python Package for Evaluation of Latent-Based
  Generative Models
Latte: Cross-framework Python Package for Evaluation of Latent-Based Generative Models
Alon Jacovi
Junyoung Lee
Alexander Lerch
DRL
23
1
0
20 Dec 2021
On Causally Disentangled Representations
On Causally Disentangled Representations
Abbavaram Gowtham Reddy
Benin Godfrey L
V. Balasubramanian
OOD
CML
39
21
0
10 Dec 2021
Self-Supervised Learning Disentangled Group Representation as Feature
Self-Supervised Learning Disentangled Group Representation as Feature
Tan Wang
Zhongqi Yue
Jianqiang Huang
Qianru Sun
Hanwang Zhang
OOD
36
67
0
28 Oct 2021
Evaluation of Latent Space Disentanglement in the Presence of
  Interdependent Attributes
Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes
Karn N. Watcharasupat
Alexander Lerch
26
2
0
11 Oct 2021
Learning Disentangled Representations in the Imaging Domain
Learning Disentangled Representations in the Imaging Domain
Xiao Liu
Pedro Sanchez
Spyridon Thermos
Alison Q. OÑeil
Sotirios A. Tsaftaris
OOD
DRL
34
71
0
26 Aug 2021
A Framework for Learning Ante-hoc Explainable Models via Concepts
A Framework for Learning Ante-hoc Explainable Models via Concepts
Anirban Sarkar
Deepak Vijaykeerthy
Anindya Sarkar
V. Balasubramanian
LRM
BDL
22
46
0
25 Aug 2021
Vector-Decomposed Disentanglement for Domain-Invariant Object Detection
Vector-Decomposed Disentanglement for Domain-Invariant Object Detection
Aming Wu
R. Liu
Yahong Han
Linchao Zhu
Yi Yang
35
103
0
15 Aug 2021
Self-Adversarial Disentangling for Specific Domain Adaptation
Self-Adversarial Disentangling for Specific Domain Adaptation
Qianyu Zhou
Qiqi Gu
Jiangmiao Pang
Xuequan Lu
Lizhuang Ma
69
49
0
08 Aug 2021
Is Disentanglement enough? On Latent Representations for Controllable
  Music Generation
Is Disentanglement enough? On Latent Representations for Controllable Music Generation
Ashis Pati
Alexander Lerch
CoGe
DRL
25
16
0
01 Aug 2021
von Mises-Fisher Loss: An Exploration of Embedding Geometries for
  Supervised Learning
von Mises-Fisher Loss: An Exploration of Embedding Geometries for Supervised Learning
Tyler R. Scott
Andrew C. Gallagher
Michael C. Mozer
29
39
0
29 Mar 2021
Generative Adversarial Transformers
Generative Adversarial Transformers
Drew A. Hudson
C. L. Zitnick
ViT
25
179
0
01 Mar 2021
Measuring Disentanglement: A Review of Metrics
Measuring Disentanglement: A Review of Metrics
M. Carbonneau
Julian Zaïdi
Jonathan Boilard
G. Gagnon
CoGe
DRL
33
81
0
16 Dec 2020
On the Binding Problem in Artificial Neural Networks
On the Binding Problem in Artificial Neural Networks
Klaus Greff
Sjoerd van Steenkiste
Jürgen Schmidhuber
OCL
233
255
0
09 Dec 2020
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
Zongze Wu
Dani Lischinski
Eli Shechtman
DRL
49
482
0
25 Nov 2020
On the Transfer of Disentangled Representations in Realistic Settings
On the Transfer of Disentangled Representations in Realistic Settings
Andrea Dittadi
Frederik Trauble
Francesco Locatello
M. Wuthrich
Vaibhav Agrawal
Ole Winther
Stefan Bauer
Bernhard Schölkopf
OOD
35
80
0
27 Oct 2020
A Sober Look at the Unsupervised Learning of Disentangled
  Representations and their Evaluation
A Sober Look at the Unsupervised Learning of Disentangled Representations and their Evaluation
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
17
66
0
27 Oct 2020
Multilinear Latent Conditioning for Generating Unseen Attribute
  Combinations
Multilinear Latent Conditioning for Generating Unseen Attribute Combinations
Markos Georgopoulos
Grigorios G. Chrysos
Maja Pantic
Yannis Panagakis
GAN
DRL
24
17
0
09 Sep 2020
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Measuring the Biases and Effectiveness of Content-Style Disentanglement
Xiao Liu
Spyridon Thermos
Gabriele Valvano
A. Chartsias
Alison Q. OÑeil
Sotirios A. Tsaftaris
CoGe
DRL
37
18
0
27 Aug 2020
Linear Disentangled Representations and Unsupervised Action Estimation
Linear Disentangled Representations and Unsupervised Action Estimation
Matthew Painter
Jonathon S. Hare
Adam Prugel-Bennett
CoGe
DRL
39
20
0
18 Aug 2020
A Commentary on the Unsupervised Learning of Disentangled
  Representations
A Commentary on the Unsupervised Learning of Disentangled Representations
Francesco Locatello
Stefan Bauer
Mario Lucic
Gunnar Rätsch
Sylvain Gelly
Bernhard Schölkopf
Olivier Bachem
OOD
DRL
32
20
0
28 Jul 2020
Learning Disentangled Representations with Latent Variation
  Predictability
Learning Disentangled Representations with Latent Variation Predictability
Xinqi Zhu
Chang Xu
Dacheng Tao
CoGe
DRL
22
26
0
25 Jul 2020
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse
  Coding
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding
David A. Klindt
Lukas Schott
Yash Sharma
Ivan Ustyuzhaninov
Wieland Brendel
Matthias Bethge
Dylan M. Paiton
CML
48
132
0
21 Jul 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
35
73
0
24 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
48
46
0
09 Jun 2020
Semi-Supervised StyleGAN for Disentanglement Learning
Semi-Supervised StyleGAN for Disentanglement Learning
Weili Nie
Tero Karras
Animesh Garg
Shoubhik Debhath
Anjul Patney
Ankit B. Patel
Anima Anandkumar
DRL
89
72
0
06 Mar 2020
Weakly-Supervised Disentanglement Without Compromises
Weakly-Supervised Disentanglement Without Compromises
Francesco Locatello
Ben Poole
Gunnar Rätsch
Bernhard Schölkopf
Olivier Bachem
Michael Tschannen
CoGe
OOD
DRL
184
314
0
07 Feb 2020
Weakly Supervised Disentanglement with Guarantees
Weakly Supervised Disentanglement with Guarantees
Rui Shu
Yining Chen
Abhishek Kumar
Stefano Ermon
Ben Poole
CoGe
DRL
56
136
0
22 Oct 2019
12
Next