Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04537
Cited By
Tighter Variational Bounds are Not Necessarily Better
13 February 2018
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tighter Variational Bounds are Not Necessarily Better"
48 / 48 papers shown
Title
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Generative Adversarial Networks for High-Dimensional Item Factor Analysis: A Deep Adversarial Learning Algorithm
Nanyu Luo
Feng Ji
DRL
41
0
0
15 Feb 2025
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
43
2
0
05 Mar 2024
Delta-AI: Local objectives for amortized inference in sparse graphical models
Jean-Pierre Falet
Hae Beom Lee
Nikolay Malkin
Chen Sun
Dragos Secrieru
Thomas Jiralerspong
Dinghuai Zhang
Guillaume Lajoie
Yoshua Bengio
51
6
0
03 Oct 2023
Autocodificadores Variacionales (VAE) Fundamentos Teóricos y Aplicaciones
J. D. L. Torre
DRL
20
1
0
18 Feb 2023
SeeGera: Self-supervised Semi-implicit Graph Variational Auto-encoders with Masking
Xiang Li
Tiandi Ye
Caihua Shan
Dongsheng Li
Ming Gao
SSL
36
30
0
29 Jan 2023
Fast and Efficient Scene Categorization for Autonomous Driving using VAEs
Saravanabalagi Ramachandran
Jonathan Horgan
Ganesh Sistu
J. McDonald
3DV
29
1
0
26 Oct 2022
Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders: Methodology and Asymptotics
Kamélia Daudel
Joe Benton
Yuyang Shi
Arnaud Doucet
DRL
19
8
0
12 Oct 2022
GFlowNets and variational inference
Nikolay Malkin
Salem Lahlou
T. Deleu
Xu Ji
J. E. Hu
Katie Everett
Dinghuai Zhang
Yoshua Bengio
BDL
134
77
0
02 Oct 2022
Learning to Drop Out: An Adversarial Approach to Training Sequence VAEs
Ðorðe Miladinovic
Kumar Shridhar
Kushal Kumar Jain
Max B. Paulus
J. M. Buhmann
Mrinmaya Sachan
Carl Allen
DRL
23
5
0
26 Sep 2022
Tighter Variational Bounds are Not Necessarily Better. A Research Report on Implementation, Ablation Study, and Extensions
Amine MĆharrak
Vít Ruzicka
Sangyun Shin
M. Vankadari
DRL
6
0
0
23 Sep 2022
Variational Open-Domain Question Answering
Valentin Liévin
Andreas Geert Motzfeldt
Ida Riis Jensen
Ole Winther
OOD
BDL
36
8
0
23 Sep 2022
Bounding Evidence and Estimating Log-Likelihood in VAE
Lukasz Struski
Marcin Mazur
Pawel Batorski
Przemysław Spurek
Jacek Tabor
21
3
0
19 Jun 2022
Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization
Adrián Javaloy
Maryam Meghdadi
Isabel Valera
27
27
0
09 Jun 2022
Variational Sparse Coding with Learned Thresholding
Kion Fallah
Christopher Rozell
DRL
23
7
0
07 May 2022
A Variational Approach to Bayesian Phylogenetic Inference
Cheng Zhang
IV FrederickA.Matsen
BDL
24
17
0
16 Apr 2022
Variational methods for simulation-based inference
Manuel Glöckler
Michael Deistler
Jakob H. Macke
30
46
0
08 Mar 2022
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
21
40
0
30 Jun 2021
Decomposed Mutual Information Estimation for Contrastive Representation Learning
Alessandro Sordoni
Nouha Dziri
Hannes Schulz
Geoffrey J. Gordon
Philip Bachman
Rémi Tachet des Combes
SSL
24
29
0
25 Jun 2021
Variational Bayes in State Space Models: Inferential and Predictive Accuracy
David T. Frazier
Rubén Loaiza-Maya
G. Martin
11
13
0
23 Jun 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
27
20
0
21 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
28
19
0
18 Jun 2021
Estimating the Unique Information of Continuous Variables
Ari Pakman
Amin Nejatbakhsh
D. Gilboa
Abdullah Makkeh
Luca Mazzucato
Michael Wibral
E. Schneidman
43
24
0
30 Jan 2021
PAC
m
^m
m
-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime
Warren Morningstar
Alexander A. Alemi
Joshua V. Dillon
82
16
0
19 Oct 2020
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Variational Inference with Continuously-Indexed Normalizing Flows
Anthony L. Caterini
R. Cornish
Dino Sejdinovic
Arnaud Doucet
BDL
24
19
0
10 Jul 2020
All in the Exponential Family: Bregman Duality in Thermodynamic Variational Inference
Rob Brekelmans
Vaden Masrani
Frank Wood
Greg Ver Steeg
Aram Galstyan
6
16
0
01 Jul 2020
Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization
Abhinav Agrawal
Daniel Sheldon
Justin Domke
TPM
BDL
8
38
0
18 Jun 2020
Multimodal Generative Learning Utilizing Jensen-Shannon-Divergence
Thomas M. Sutter
Imant Daunhawer
Julia E. Vogt
36
67
0
15 Jun 2020
Joint Stochastic Approximation and Its Application to Learning Discrete Latent Variable Models
Zhijian Ou
Yunfu Song
BDL
32
8
0
28 May 2020
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
27
266
0
08 Nov 2019
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
21
10
0
20 Sep 2019
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
Explainable Anatomical Shape Analysis through Deep Hierarchical Generative Models
C. Biffi
Juan J. Cerrolaza
G. Tarroni
Wenjia Bai
A. de Marvao
...
Jinming Duan
S. Prasad
S. Cook
D. O’Regan
Daniel Rueckert
MedIm
23
46
0
28 Jun 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
16
18
0
24 Jun 2019
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
34
21
0
04 Jun 2019
Introducing Super Pseudo Panels: Application to Transport Preference Dynamics
S. Borysov
Jeppe Rich
AI4TS
24
7
0
01 Mar 2019
Deconstructing Generative Adversarial Networks
Banghua Zhu
Jiantao Jiao
David Tse
34
49
0
27 Jan 2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data
Pierre-Alexandre Mattei
J. Frellsen
SyDa
25
45
0
06 Dec 2018
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
15
7
0
27 Oct 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
31
16
0
05 Aug 2018
Semi-Implicit Variational Inference
Mingzhang Yin
Mingyuan Zhou
BDL
35
121
0
28 May 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Semi-Amortized Variational Autoencoders
Yoon Kim
Sam Wiseman
Andrew C. Miller
David Sontag
Alexander M. Rush
BDL
DRL
33
243
0
07 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
42
46
0
01 Dec 2017
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
1