ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04364
  4. Cited By
Junction Tree Variational Autoencoder for Molecular Graph Generation

Junction Tree Variational Autoencoder for Molecular Graph Generation

12 February 2018
Wengong Jin
Regina Barzilay
Tommi Jaakkola
ArXivPDFHTML

Papers citing "Junction Tree Variational Autoencoder for Molecular Graph Generation"

50 / 250 papers shown
Title
Deterministic Decoding for Discrete Data in Variational Autoencoders
Deterministic Decoding for Discrete Data in Variational Autoencoders
Daniil Polykovskiy
Dmitry Vetrov
OffRL
21
8
0
04 Mar 2020
Generalization and Representational Limits of Graph Neural Networks
Generalization and Representational Limits of Graph Neural Networks
Vikas K. Garg
Stefanie Jegelka
Tommi Jaakkola
GNN
26
304
0
14 Feb 2020
Can Graph Neural Networks Count Substructures?
Can Graph Neural Networks Count Substructures?
Zhengdao Chen
Lei Chen
Soledad Villar
Joan Bruna
GNN
57
319
0
10 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
21
279
0
08 Feb 2020
A deep-learning view of chemical space designed to facilitate drug
  discovery
A deep-learning view of chemical space designed to facilitate drug discovery
P. Maragakis
Hunter M. Nisonoff
B. Cole
D. Shaw
41
28
0
07 Feb 2020
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
Guillaume Salha-Galvan
Romain Hennequin
Jean-Baptiste Remy
Manuel Moussallam
Michalis Vazirgiannis
GNN
BDL
29
6
0
05 Feb 2020
TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced
  Graph Neural Network
TaxoExpan: Self-supervised Taxonomy Expansion with Position-Enhanced Graph Neural Network
Jiaming Shen
Zhihong Shen
Chenyan Xiong
Chi Wang
Kuansan Wang
Jiawei Han
27
74
0
26 Jan 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
64
426
0
26 Jan 2020
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph
  Generation
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation
Nikhil Goyal
Harsh Jain
Sayan Ranu
18
91
0
22 Jan 2020
Machine learning and AI-based approaches for bioactive ligand discovery
  and GPCR-ligand recognition
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition
S. Raschka
Benjamin Kaufman
AI4CE
24
67
0
17 Jan 2020
Graph-Bert: Only Attention is Needed for Learning Graph Representations
Graph-Bert: Only Attention is Needed for Learning Graph Representations
Jiawei Zhang
Haopeng Zhang
Congying Xia
Li Sun
31
298
0
15 Jan 2020
A Gentle Introduction to Deep Learning for Graphs
A Gentle Introduction to Deep Learning for Graphs
D. Bacciu
Federico Errica
Alessio Micheli
Marco Podda
AI4CE
GNN
51
277
0
29 Dec 2019
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
CORE: Automatic Molecule Optimization Using Copy & Refine Strategy
Tianfan Fu
Cao Xiao
Jimeng Sun
31
63
0
23 Nov 2019
G2SAT: Learning to Generate SAT Formulas
G2SAT: Learning to Generate SAT Formulas
Jiaxuan You
Haoze Wu
Clark W. Barrett
R. Ramanujan
J. Leskovec
NAI
27
35
0
29 Oct 2019
Hyperbolic Graph Neural Networks
Hyperbolic Graph Neural Networks
Qi Liu
Maximilian Nickel
Douwe Kiela
AI4CE
GNN
45
370
0
28 Oct 2019
Learning to Make Generalizable and Diverse Predictions for
  Retrosynthesis
Learning to Make Generalizable and Diverse Predictions for Retrosynthesis
Benson Chen
T. Shen
Tommi Jaakkola
Regina Barzilay
24
46
0
21 Oct 2019
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring
  the Chemical Space
Augmenting Genetic Algorithms with Deep Neural Networks for Exploring the Chemical Space
AkshatKumar Nigam
Pascal Friederich
Mario Krenn
Alán Aspuru-Guzik
AI4CE
27
128
0
25 Sep 2019
Synthetic Data for Deep Learning
Synthetic Data for Deep Learning
Sergey I. Nikolenko
46
348
0
25 Sep 2019
A Generative Model for Molecular Distance Geometry
A Generative Model for Molecular Distance Geometry
G. Simm
José Miguel Hernández-Lobato
GAN
29
107
0
25 Sep 2019
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Jordan Hoffmann
Louis Maestrati
Yoshihide Sawada
Jian Tang
Jean Michel D. Sellier
Yoshua Bengio
DiffM
3DV
30
66
0
03 Sep 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug
  discovery using deep learning
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
30
92
0
20 Aug 2019
GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on
  the GPU
GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU
Carl Yang
A. Buluç
John Douglas Owens
GNN
16
97
0
04 Aug 2019
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation
  Learning via Mutual Information Maximization
InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization
Fan-Yun Sun
Jordan Hoffmann
Vikas Verma
Jian Tang
SSL
50
840
0
31 Jul 2019
Mixed-Variable Bayesian Optimization
Mixed-Variable Bayesian Optimization
Erik A. Daxberger
Anastasia Makarova
M. Turchetta
Andreas Krause
24
51
0
02 Jul 2019
A Two-Step Graph Convolutional Decoder for Molecule Generation
A Two-Step Graph Convolutional Decoder for Molecule Generation
Xavier Bresson
T. Laurent
25
60
0
08 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
40
201
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular
  string representation
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
13
70
0
31 May 2019
MolecularRNN: Generating realistic molecular graphs with optimized
  properties
MolecularRNN: Generating realistic molecular graphs with optimized properties
Mariya Popova
Mykhailo Shvets
Junier Oliva
Olexandr Isayev
GNN
35
164
0
31 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
32
196
0
24 Apr 2019
Molecular geometry prediction using a deep generative graph neural
  network
Molecular geometry prediction using a deep generative graph neural network
Elman Mansimov
Omar Mahmood
Seokho Kang
Kyunghyun Cho
24
183
0
31 Mar 2019
From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders
Partha Ghosh
Mehdi S. M. Sajjadi
Antonio Vergari
Michael J. Black
Bernhard Schölkopf
DRL
37
269
0
29 Mar 2019
Tiered Latent Representations and Latent Spaces for Molecular Graphs
Tiered Latent Representations and Latent Spaces for Molecular Graphs
Daniel T. Chang
AI4CE
BDL
35
7
0
21 Mar 2019
A Degeneracy Framework for Scalable Graph Autoencoders
A Degeneracy Framework for Scalable Graph Autoencoders
Guillaume Salha-Galvan
Romain Hennequin
Viet-Anh Tran
Michalis Vazirgiannis
GNN
29
36
0
23 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
LanczosNet: Multi-Scale Deep Graph Convolutional Networks
Renjie Liao
Zhizhen Zhao
R. Urtasun
R. Zemel
GNN
25
227
0
06 Jan 2019
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation
  Models
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models
Daniil Polykovskiy
Alexander Zhebrak
Benjamín Sánchez-Lengeling
Sergey Golovanov
Oktai Tatanov
...
Simon Johansson
Hongming Chen
Sergey I. Nikolenko
Alán Aspuru-Guzik
Alex Zhavoronkov
ELM
197
633
0
29 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
692
0
22 Nov 2018
Chemical Structure Elucidation from Mass Spectrometry by Matching
  Substructures
Chemical Structure Elucidation from Mass Spectrometry by Matching Substructures
Jing Lim
Joshua Wong
M. X. Wong
Lee Han Eric Tan
Hai Leong Chieu
Davin Choo
Neng Kai Nigel Neo
21
8
0
17 Nov 2018
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical
  Reaction Prediction
Molecular Transformer - A Model for Uncertainty-Calibrated Chemical Reaction Prediction
P. Schwaller
Teodoro Laino
John McGuinness
A. Horváth
Constantine Bekas
A. Lee
30
719
0
06 Nov 2018
Optimization of Molecules via Deep Reinforcement Learning
Optimization of Molecules via Deep Reinforcement Learning
Zhenpeng Zhou
S. Kearnes
Li Li
R. Zare
Patrick F. Riley
AI4CE
27
533
0
19 Oct 2018
Latent Molecular Optimization for Targeted Therapeutic Design
Latent Molecular Optimization for Targeted Therapeutic Design
Tristan Aumentado-Armstrong
15
41
0
05 Sep 2018
DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity
  through Unified Recurrent and Convolutional Neural Networks
DeepAffinity: Interpretable Deep Learning of Compound-Protein Affinity through Unified Recurrent and Convolutional Neural Networks
Mostafa Karimi
Di Wu
Zhangyang Wang
Yang Shen
35
358
0
20 Jun 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
206
885
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
35
906
0
30 May 2018
Conditional molecular design with deep generative models
Conditional molecular design with deep generative models
Seokho Kang
Kyunghyun Cho
BDL
175
183
0
30 Apr 2018
Attentional Multilabel Learning over Graphs: A Message Passing Approach
Attentional Multilabel Learning over Graphs: A Message Passing Approach
Kien Do
T. Tran
Thin Nguyen
Svetha Venkatesh
29
17
0
01 Apr 2018
Graphite: Iterative Generative Modeling of Graphs
Graphite: Iterative Generative Modeling of Graphs
Aditya Grover
Aaron Zweig
Stefano Ermon
BDL
33
296
0
28 Mar 2018
Constrained Bayesian Optimization for Automatic Chemical Design
Constrained Bayesian Optimization for Automatic Chemical Design
Ryan-Rhys Griffiths
José Miguel Hernández-Lobato
BDL
39
76
0
16 Sep 2017
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
260
1,811
0
25 Nov 2016
Previous
12345