Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04364
Cited By
Junction Tree Variational Autoencoder for Molecular Graph Generation
12 February 2018
Wengong Jin
Regina Barzilay
Tommi Jaakkola
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Junction Tree Variational Autoencoder for Molecular Graph Generation"
50 / 248 papers shown
Title
GOOD: A Graph Out-of-Distribution Benchmark
Shurui Gui
Xiner Li
Limei Wang
Shuiwang Ji
OOD
33
116
0
16 Jun 2022
Long Range Graph Benchmark
Vijay Prakash Dwivedi
Ladislav Rampášek
Mikhail Galkin
Alipanah Parviz
Guy Wolf
A. Luu
Dominique Beaini
26
195
0
16 Jun 2022
Exploring Chemical Space with Score-based Out-of-distribution Generation
Seul Lee
Jaehyeong Jo
Sung Ju Hwang
OODD
30
75
0
06 Jun 2022
An Unpooling Layer for Graph Generation
Yi Guo
Dongmian Zou
Gilad Lerman
16
2
0
04 Jun 2022
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
Kuangqi Zhou
Kaixin Wang
Jiashi Feng
Jian Tang
Tingyang Xu
Xinchao Wang
29
1
0
23 May 2022
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design
Yinan Huang
Xing Peng
Jianzhu Ma
Muhan Zhang
BDL
30
48
0
15 May 2022
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Xingang Peng
Shitong Luo
Jiaqi Guan
Qi Xie
Jian-wei Peng
Jianzhu Ma
27
176
0
15 May 2022
Conditional
β
β
β
-VAE for De Novo Molecular Generation
Ryan J. Richards
A. Groener
BDL
DRL
24
10
0
01 May 2022
SPECTRE: Spectral Conditioning Helps to Overcome the Expressivity Limits of One-shot Graph Generators
Karolis Martinkus
Andreas Loukas
Nathanael Perraudin
Roger Wattenhofer
42
67
0
04 Apr 2022
SELFIES and the future of molecular string representations
Mario Krenn
Qianxiang Ai
Senja Barthel
Nessa Carson
Angelo Frei
...
Andrew Wang
Andrew D. White
Adamo Young
Rose Yu
A. Aspuru‐Guzik
38
149
0
31 Mar 2022
Automatic Identification of Chemical Moieties
Jonas Lederer
M. Gastegger
Kristof T. Schütt
Michael C. Kampffmeyer
Klaus-Robert Muller
Oliver T. Unke
21
5
0
30 Mar 2022
MolGenSurvey: A Systematic Survey in Machine Learning Models for Molecule Design
Yuanqi Du
Tianfan Fu
Jimeng Sun
Shengchao Liu
AI4CE
33
86
0
28 Mar 2022
Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoencoders
Samuel Stanton
Wesley J. Maddox
Nate Gruver
Phillip M. Maffettone
E. Delaney
Peyton Greenside
A. Wilson
BDL
38
89
0
23 Mar 2022
A Survey on Deep Graph Generation: Methods and Applications
Yanqiao Zhu
Yuanqi Du
Yinkai Wang
Yichen Xu
Jieyu Zhang
Qiang Liu
Shu Wu
3DV
GNN
31
67
0
13 Mar 2022
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu
Lantao Yu
Yang Song
Chence Shi
Stefano Ermon
Jian Tang
BDL
DiffM
52
496
0
06 Mar 2022
Variational Autoencoders Without the Variation
Gregory A. Daly
J. Fieldsend
G. Tabor
31
2
0
01 Mar 2022
Multi-Objective Latent Space Optimization of Generative Molecular Design Models
Nafiz Abeer
Nathan M. Urban
Ryan Weil
Francis J. Alexander
Byung-Jun Yoon
23
15
0
01 Mar 2022
Bayesian Sequential Stacking Algorithm for Concurrently Designing Molecules and Synthetic Reaction Networks
Qi Zhang
Chang Liu
Stephen Wu
Ryo Yoshida
BDL
32
3
0
01 Mar 2022
Interpretable Molecular Graph Generation via Monotonic Constraints
Yuanqi Du
Xiaojie Guo
Amarda Shehu
Liang Zhao
65
19
0
28 Feb 2022
Learning to Discover Medicines
T. Nguyen
Thin Nguyen
T. Tran
34
1
0
14 Feb 2022
MGCVAE: Multi-objective Inverse Design via Molecular Graph Conditional Variational Autoencoder
Myeong-Sung Lee
K. Min
33
41
0
14 Feb 2022
Score-based Generative Modeling of Graphs via the System of Stochastic Differential Equations
Jaehyeong Jo
Seul Lee
Sung Ju Hwang
DiffM
22
211
0
05 Feb 2022
Biases in In Silico Evaluation of Molecular Optimization Methods and Bias-Reduced Evaluation Methodology
Hiroshi Kajino
Kohei Miyaguchi
Takayuki Osogami
59
1
0
28 Jan 2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
Haydn Thomas Jones
Juston Moore
Matt J. Kusner
John Bradshaw
Jacob R. Gardner
BDL
58
69
0
28 Jan 2022
Improving Subgraph Recognition with Variational Graph Information Bottleneck
Junchi Yu
Jie Cao
Ran He
22
53
0
18 Dec 2021
Genetic Algorithm for Constrained Molecular Inverse Design
Yurim Lee
Gydam Choi
Minsug Yoon
Cheongwon Kim
29
1
0
07 Dec 2021
Deep Molecular Representation Learning via Fusing Physical and Chemical Information
Shuwen Yang
Ziyao Li
Guojie Song
Lingsheng Cai
AI4CE
40
28
0
28 Nov 2021
Directional Message Passing on Molecular Graphs via Synthetic Coordinates
Johannes Klicpera
Chandan Yeshwanth
Stephan Günnemann
42
35
0
08 Nov 2021
Brick-by-Brick: Combinatorial Construction with Deep Reinforcement Learning
H. Chung
Jungtaek Kim
Boris Knyazev
Jinhwi Lee
Graham W. Taylor
Jaesik Park
Minsu Cho
SSL
OffRL
18
20
0
29 Oct 2021
Permutation invariant graph-to-sequence model for template-free retrosynthesis and reaction prediction
Zhengkai Tu
Connor W. Coley
30
90
0
19 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
56
176
0
06 Oct 2021
Hit and Lead Discovery with Explorative RL and Fragment-based Molecule Generation
Soojung Yang
Doyeong Hwang
Seul Lee
Seongok Ryu
Sung Ju Hwang
34
67
0
04 Oct 2021
Motif-based Graph Self-Supervised Learning for Molecular Property Prediction
Zaixin Zhang
Qi Liu
Hao Wang
Chengqiang Lu
Chee-Kong Lee
SSL
AI4CE
37
250
0
03 Oct 2021
Simulated annealing for optimization of graphs and sequences
Xianggen Liu
Pengyong Li
Fandong Meng
Hao Zhou
Huasong Zhong
Jie Zhou
Lili Mou
Sen Song
49
19
0
01 Oct 2021
Vitruvion: A Generative Model of Parametric CAD Sketches
Ari Seff
Wenda Zhou
Nick Richardson
Ryan P. Adams
27
64
0
29 Sep 2021
Differentiable Scaffolding Tree for Molecular Optimization
Tianfan Fu
Wenhao Gao
Cao Xiao
Jacob Yasonik
Connor W. Coley
Jimeng Sun
25
76
0
22 Sep 2021
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models
Maciej Wołczyk
Magdalena Proszewska
Lukasz Maziarka
Maciej Ziȩba
Patryk Wielopolski
Rafał Kurczab
Marek Śmieja
DRL
27
5
0
18 Sep 2021
Self-learn to Explain Siamese Networks Robustly
Chao Chen
Yifan Shen
Guixiang Ma
Xiangnan Kong
S. Rangarajan
Xi Zhang
Sihong Xie
46
5
0
15 Sep 2021
Machine learning modeling of family wide enzyme-substrate specificity screens
Samuel Goldman
Ria Das
Kevin Kaichuang Yang
Connor W. Coley
27
54
0
08 Sep 2021
Multiscale Spatio-Temporal Graph Neural Networks for 3D Skeleton-Based Motion Prediction
Maosen Li
Siheng Chen
Yangheng Zhao
Ya Zhang
Yanfeng Wang
Qi Tian
3DH
23
74
0
25 Aug 2021
Unconditional Scene Graph Generation
Sarthak Garg
Helisa Dhamo
Azade Farshad
Sabrina Musatian
Nassir Navab
F. Tombari
18
23
0
12 Aug 2021
Geometric Deep Learning on Molecular Representations
Kenneth Atz
F. Grisoni
G. Schneider
AI4CE
34
287
0
26 Jul 2021
Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets
Hayeon Lee
Eunyoung Hyung
Sung Ju Hwang
40
43
0
02 Jul 2021
Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property Prediction
Jiahua Rao
Shuangjia Zheng
Yuedong Yang
21
46
0
01 Jul 2021
Improving black-box optimization in VAE latent space using decoder uncertainty
Pascal Notin
José Miguel Hernández-Lobato
Y. Gal
32
61
0
30 Jun 2021
Molecule Generation by Principal Subgraph Mining and Assembling
Xiangzhe Kong
Wenbing Huang
Zhixing Tan
Yang Liu
GNN
21
45
0
29 Jun 2021
DGL-LifeSci: An Open-Source Toolkit for Deep Learning on Graphs in Life Science
Mufei Li
Jinjing Zhou
Jiajing Hu
Wenxuan Fan
Yangkang Zhang
Yaxin Gu
George Karypis
GNN
AI4CE
33
159
0
27 Jun 2021
Geometric learning of the conformational dynamics of molecules using dynamic graph neural networks
Michael Ashby
Jenna A. Bilbrey
25
4
0
24 Jun 2021
Graph Context Encoder: Graph Feature Inpainting for Graph Generation and Self-supervised Pretraining
Oriel Frigo
Rémy Brossard
David Dehaene
37
1
0
18 Jun 2021
Planning Spatial Networks with Monte Carlo Tree Search
Victor-Alexandru Darvariu
Stephen Hailes
Mirco Musolesi
27
7
0
12 Jun 2021
Previous
1
2
3
4
5
Next