ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03690
  4. Cited By
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
v1v2v3 (latest)

On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups

11 February 2018
Risi Kondor
Shubhendu Trivedi
    MLT
ArXiv (abs)PDFHTML

Papers citing "On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups"

50 / 326 papers shown
Title
Rotation Equivariant Proximal Operator for Deep Unfolding Methods in
  Image Restoration
Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration
J. Fu
Qi Xie
Deyu Meng
Zongben Xu
94
8
0
25 Dec 2023
Harmonics of Learning: Universal Fourier Features Emerge in Invariant
  Networks
Harmonics of Learning: Universal Fourier Features Emerge in Invariant Networks
Giovanni Luca Marchetti
Christopher Hillar
Danica Kragic
Sophia Sanborn
85
14
0
13 Dec 2023
Topological Obstructions and How to Avoid Them
Topological Obstructions and How to Avoid Them
Babak Esmaeili
Robin Walters
Heiko Zimmermann
Jan-Willem van de Meent
AI4CE
59
3
0
12 Dec 2023
Grokking Group Multiplication with Cosets
Grokking Group Multiplication with Cosets
Dashiell Stander
Qinan Yu
Honglu Fan
Stella Biderman
93
11
0
11 Dec 2023
Learning to be Simple
Learning to be Simple
Yang-Hui He
Vishnu Jejjala
Challenger Mishra
Max Sharnoff
52
0
0
08 Dec 2023
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Expressive Sign Equivariant Networks for Spectral Geometric Learning
Derek Lim
Joshua Robinson
Stefanie Jegelka
Haggai Maron
126
17
0
04 Dec 2023
Affine Invariance in Continuous-Domain Convolutional Neural Networks
Affine Invariance in Continuous-Domain Convolutional Neural Networks
A. Mohaddes
Johannes Lederer
85
1
0
13 Nov 2023
H-NeXt: The next step towards roto-translation invariant networks
H-NeXt: The next step towards roto-translation invariant networks
Tomáš Karella
F. Šroubek
J. Flusser
Jan Blazek
Vasek Kosik
60
1
0
02 Nov 2023
EquivAct: SIM(3)-Equivariant Visuomotor Policies beyond Rigid Object
  Manipulation
EquivAct: SIM(3)-Equivariant Visuomotor Policies beyond Rigid Object Manipulation
Jingyun Yang
Congyue Deng
Jimmy Wu
Rika Antonova
Leonidas Guibas
Jeannette Bohg
LM&Ro
112
36
0
24 Oct 2023
Equivariant Deep Weight Space Alignment
Equivariant Deep Weight Space Alignment
Aviv Navon
Aviv Shamsian
Ethan Fetaya
Gal Chechik
Nadav Dym
Haggai Maron
86
24
0
20 Oct 2023
Almost Equivariance via Lie Algebra Convolutions
Almost Equivariance via Lie Algebra Convolutions
Daniel McNeela
132
7
0
19 Oct 2023
Lie Group Decompositions for Equivariant Neural Networks
Lie Group Decompositions for Equivariant Neural Networks
Mircea Mironenco
Patrick Forré
AI4CE
88
8
0
17 Oct 2023
Equivariant Matrix Function Neural Networks
Equivariant Matrix Function Neural Networks
Ilyes Batatia
Lars L. Schaaf
Huajie Chen
Gábor Csányi
Christoph Ortner
Felix A. Faber
85
6
0
16 Oct 2023
Efficient Model-Agnostic Multi-Group Equivariant Networks
Efficient Model-Agnostic Multi-Group Equivariant Networks
Razan Baltaji
Sourya Basu
Lav Varshney
58
1
0
14 Oct 2023
Learning Layer-wise Equivariances Automatically using Gradients
Learning Layer-wise Equivariances Automatically using Gradients
Tycho F. A. van der Ouderaa
Alexander Immer
Mark van der Wilk
MLT
108
14
0
09 Oct 2023
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie
  Algebras
Lie Neurons: Adjoint-Equivariant Neural Networks for Semisimple Lie Algebras
Tzu-Yuan Lin
Minghan Zhu
Maani Ghaffari
111
3
0
06 Oct 2023
Fast, Expressive SE$(n)$ Equivariant Networks through Weight-Sharing in
  Position-Orientation Space
Fast, Expressive SE(n)(n)(n) Equivariant Networks through Weight-Sharing in Position-Orientation Space
Erik J. Bekkers
Sharvaree P. Vadgama
Rob D. Hesselink
P. A. V. D. Linden
David W. Romero
67
30
0
04 Oct 2023
Discovering Symmetry Breaking in Physical Systems with Relaxed Group
  Convolution
Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution
Rui Wang
E. Hofgard
Han Gao
Robin Walters
Tess E. Smidt
AI4CE
113
12
0
03 Oct 2023
Latent Space Symmetry Discovery
Latent Space Symmetry Discovery
Jianke Yang
Nima Dehmamy
Robin Walters
Rose Yu
96
15
0
29 Sep 2023
Learning to Transform for Generalizable Instance-wise Invariance
Learning to Transform for Generalizable Instance-wise Invariance
Yan Liu
Carlos Esteves
Franccois Marelli
Stella X. Yu
OOD
53
2
0
28 Sep 2023
Improving Equivariance in State-of-the-Art Supervised Depth and Normal
  Predictors
Improving Equivariance in State-of-the-Art Supervised Depth and Normal Predictors
Yuanyi Zhong
Anand Bhattad
Yu-Xiong Wang
David Forsyth
MDE
64
2
0
28 Sep 2023
All you need is spin: SU(2) equivariant variational quantum circuits
  based on spin networks
All you need is spin: SU(2) equivariant variational quantum circuits based on spin networks
R. D. East
Guillermo Alonso-Linaje
Chae-Yeun Park
52
13
0
13 Sep 2023
Neural Discovery of Permutation Subgroups
Neural Discovery of Permutation Subgroups
Pavan Karjol
Rohan Kashyap
A. Prathosh
62
3
0
11 Sep 2023
A Unified Framework for Discovering Discrete Symmetries
A Unified Framework for Discovering Discrete Symmetries
Pavan Karjol
Rohan Kashyap
Aditya Gopalan
Prathosh A.P.
65
4
0
06 Sep 2023
Probabilistic Invariant Learning with Randomized Linear Classifiers
Probabilistic Invariant Learning with Randomized Linear Classifiers
Leonardo Cotta
Gal Yehuda
Assaf Schuster
Chris J. Maddison
94
2
0
08 Aug 2023
Can Euclidean Symmetry be Leveraged in Reinforcement Learning and
  Planning?
Can Euclidean Symmetry be Leveraged in Reinforcement Learning and Planning?
Linfeng Zhao
Owen Howell
Jung Yeon Park
Xu Zhu
Robin Walters
Lawson L. S. Wong
80
1
0
17 Jul 2023
Self-Supervised Learning with Lie Symmetries for Partial Differential
  Equations
Self-Supervised Learning with Lie Symmetries for Partial Differential Equations
Grégoire Mialon
Q. Garrido
Hannah Lawrence
Danyal Rehman
Yann LeCun
B. Kiani
SSL
109
26
0
11 Jul 2023
Polynomial Width is Sufficient for Set Representation with
  High-dimensional Features
Polynomial Width is Sufficient for Set Representation with High-dimensional Features
Peihao Wang
Shenghao Yang
Shu Li
Zhangyang Wang
Pan Li
107
4
0
08 Jul 2023
Equivariant Single View Pose Prediction Via Induced and Restricted
  Representations
Equivariant Single View Pose Prediction Via Induced and Restricted Representations
Owen Howell
David Klee
Ondrej Biza
Linfeng Zhao
Robin Walters
94
6
0
07 Jul 2023
Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis
Regular SE(3) Group Convolutions for Volumetric Medical Image Analysis
T. Kuipers
Erik J. Bekkers
62
5
0
24 Jun 2023
Practical Equivariances via Relational Conditional Neural Processes
Practical Equivariances via Relational Conditional Neural Processes
Daolang Huang
Manuel Haussmann
Ulpu Remes
S. T. John
Grégoire Clarté
K. Luck
Samuel Kaski
Luigi Acerbi
BDL
150
9
0
19 Jun 2023
Scale-Rotation-Equivariant Lie Group Convolution Neural Networks (Lie
  Group-CNNs)
Scale-Rotation-Equivariant Lie Group Convolution Neural Networks (Lie Group-CNNs)
Weizheng Qiao
Yang Xu
Hui Li
63
1
0
12 Jun 2023
Any-dimensional equivariant neural networks
Any-dimensional equivariant neural networks
Eitan Levin
Mateo Díaz
90
8
0
10 Jun 2023
Group Invariant Global Pooling
Group Invariant Global Pooling
Kamil Bujel
Yonatan Gideoni
Chaitanya K. Joshi
Pietro Lio
62
0
0
30 May 2023
Learning Linear Groups in Neural Networks
Learning Linear Groups in Neural Networks
Emmanouil Theodosis
Karim Helwani
Demba E. Ba
AI4CE
56
0
0
29 May 2023
A Rainbow in Deep Network Black Boxes
A Rainbow in Deep Network Black Boxes
Florentin Guth
Brice Ménard
G. Rochette
S. Mallat
111
12
0
29 May 2023
Neural Fourier Transform: A General Approach to Equivariant
  Representation Learning
Neural Fourier Transform: A General Approach to Equivariant Representation Learning
Masanori Koyama
Kenji Fukumizu
Kohei Hayashi
Takeru Miyato
88
8
0
29 May 2023
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Approximation-Generalization Trade-offs under (Approximate) Group Equivariance
Mircea Petrache
Shubhendu Trivedi
100
25
0
27 May 2023
Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and
  Applications
Higher Order Gauge Equivariant CNNs on Riemannian Manifolds and Applications
Gianfranco Cortés
Yue Yu
R. Chen
Melissa S. Armstrong
David E Vaillancourt
B. Vemuri
80
1
0
26 May 2023
Banana: Banach Fixed-Point Network for Pointcloud Segmentation with
  Inter-Part Equivariance
Banana: Banach Fixed-Point Network for Pointcloud Segmentation with Inter-Part Equivariance
Congyue Deng
Jiahui Lei
Bokui Shen
Kostas Daniilidis
Leonidas Guibas
3DPC
88
20
0
25 May 2023
Neural Functional Transformers
Neural Functional Transformers
Allan Zhou
Kaien Yang
Yiding Jiang
Kaylee Burns
Winnie Xu
Samuel Sokota
J. Zico Kolter
Chelsea Finn
90
37
0
22 May 2023
Clifford Group Equivariant Neural Networks
Clifford Group Equivariant Neural Networks
David Ruhe
Johannes Brandstetter
Patrick Forré
87
42
0
18 May 2023
Adaptive aggregation of Monte Carlo augmented decomposed filters for
  efficient group-equivariant convolutional neural network
Adaptive aggregation of Monte Carlo augmented decomposed filters for efficient group-equivariant convolutional neural network
Wenzhao Zhao
Barbara D. Wichtmann
Steffen Albert
Angelika Maurer
F. G. Zollner
Ulrike Attenberger
Jurgen Hesser
93
1
0
17 May 2023
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object
  Segmentation Without Scene Supervision
EFEM: Equivariant Neural Field Expectation Maximization for 3D Object Segmentation Without Scene Supervision
Jiahui Lei
Congyue Deng
Karl Schmeckpeper
Leonidas Guibas
Kostas Daniilidis
3DPC
102
22
0
27 Mar 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
105
7
0
23 Mar 2023
A General Theory of Correct, Incorrect, and Extrinsic Equivariance
A General Theory of Correct, Incorrect, and Extrinsic Equivariance
Dian Wang
Xu Zhu
Jung Yeon Park
Mingxi Jia
Guanang Su
Robert Platt
Robin Walters
85
16
0
08 Mar 2023
Densely Connected $G$-invariant Deep Neural Networks with Signed
  Permutation Representations
Densely Connected GGG-invariant Deep Neural Networks with Signed Permutation Representations
Devanshu Agrawal
James Ostrowski
AI4CE
68
0
0
08 Mar 2023
AI for Science: An Emerging Agenda
AI for Science: An Emerging Agenda
Philipp Berens
Kyle Cranmer
Neil D. Lawrence
U. V. Luxburg
Jessica Montgomery
65
6
0
07 Mar 2023
Deep Neural Networks with Efficient Guaranteed Invariances
Deep Neural Networks with Efficient Guaranteed Invariances
M. Rath
Alexandru Paul Condurache
56
5
0
02 Mar 2023
Permutation Equivariant Neural Functionals
Permutation Equivariant Neural Functionals
Allan Zhou
Kaien Yang
Kaylee Burns
Adriano Cardace
Yiding Jiang
Samuel Sokota
J. Zico Kolter
Chelsea Finn
131
56
0
27 Feb 2023
Previous
1234567
Next