ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.03480
  4. Cited By
GraphVAE: Towards Generation of Small Graphs Using Variational
  Autoencoders

GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders

9 February 2018
M. Simonovsky
N. Komodakis
    GNN
    BDL
ArXivPDFHTML

Papers citing "GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders"

50 / 159 papers shown
Title
Molecular graph generation with Graph Neural Networks
Molecular graph generation with Graph Neural Networks
P. Bongini
Monica Bianchini
F. Scarselli
GNN
30
137
0
14 Dec 2020
Road Scene Graph: A Semantic Graph-Based Scene Representation Dataset
  for Intelligent Vehicles
Road Scene Graph: A Semantic Graph-Based Scene Representation Dataset for Intelligent Vehicles
Yafu Tian
Alexander Carballo
Ruifeng Li
K. Takeda
GNN
31
27
0
27 Nov 2020
Generative Layout Modeling using Constraint Graphs
Generative Layout Modeling using Constraint Graphs
W. Para
Paul Guerrero
Tom Kelly
Leonidas J. Guibas
Peter Wonka
31
68
0
26 Nov 2020
Generating 3D Molecular Structures Conditional on a Receptor Binding
  Site with Deep Generative Models
Generating 3D Molecular Structures Conditional on a Receptor Binding Site with Deep Generative Models
Tomohide Masuda
Matthew Ragoza
D. Koes
DiffM
37
52
0
16 Oct 2020
A Systematic Survey on Deep Generative Models for Graph Generation
A Systematic Survey on Deep Generative Models for Graph Generation
Xiaojie Guo
Liang Zhao
MedIm
46
147
0
13 Jul 2020
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
MoFlow: An Invertible Flow Model for Generating Molecular Graphs
Chengxi Zang
Fei Wang
BDL
28
280
0
17 Jun 2020
Categorical Normalizing Flows via Continuous Transformations
Categorical Normalizing Flows via Continuous Transformations
Phillip Lippe
E. Gavves
BDL
21
43
0
17 Jun 2020
Does Unsupervised Architecture Representation Learning Help Neural
  Architecture Search?
Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan
Yu Zheng
Wei Ao
Xiao Zeng
Mi Zhang
SSL
AI4CE
32
100
0
12 Jun 2020
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Interpretable Deep Graph Generation with Node-Edge Co-Disentanglement
Xiaojie Guo
Liang Zhao
Zhao Qin
Lingfei Wu
Amarda Shehu
Yanfang Ye
CoGe
DRL
43
46
0
09 Jun 2020
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Machine Learning on Graphs: A Model and Comprehensive Taxonomy
Ines Chami
Sami Abu-El-Haija
Bryan Perozzi
Christopher Ré
Kevin Patrick Murphy
22
286
0
07 May 2020
Graph2Plan: Learning Floorplan Generation from Layout Graphs
Graph2Plan: Learning Floorplan Generation from Layout Graphs
Ruizhen Hu
Zeyu Huang
Yuhan Tang
Oliver Matias van Kaick
Hao Zhang
Hui Huang
GNN
DRL
31
119
0
27 Apr 2020
Generating Tertiary Protein Structures via an Interpretative Variational
  Autoencoder
Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder
Xiaojie Guo
Yuanqi Du
Sivani Tadepalli
Liang Zhao
Amarda Shehu
DRL
30
26
0
08 Apr 2020
Deep Multi-attributed Graph Translation with Node-Edge Co-evolution
Deep Multi-attributed Graph Translation with Node-Edge Co-evolution
Xiaojie Guo
Liang Zhao
Cameron Nowzari
S. Rafatirad
Houman Homayoun
Sai Manoj P D
45
27
0
22 Mar 2020
Graph Deconvolutional Generation
Graph Deconvolutional Generation
Daniel Flam-Shepherd
Tony C Wu
Alán Aspuru-Guzik
BDL
28
31
0
14 Feb 2020
Hierarchical Generation of Molecular Graphs using Structural Motifs
Hierarchical Generation of Molecular Graphs using Structural Motifs
Wengong Jin
Regina Barzilay
Tommi Jaakkola
28
279
0
08 Feb 2020
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding
Guillaume Salha-Galvan
Romain Hennequin
Jean-Baptiste Remy
Manuel Moussallam
Michalis Vazirgiannis
GNN
BDL
34
6
0
05 Feb 2020
GraphAF: a Flow-based Autoregressive Model for Molecular Graph
  Generation
GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation
Chence Shi
Minkai Xu
Zhaocheng Zhu
Weinan Zhang
Ming Zhang
Jian Tang
66
426
0
26 Jan 2020
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph
  Generation
GraphGen: A Scalable Approach to Domain-agnostic Labeled Graph Generation
Nikhil Goyal
Harsh Jain
Sayan Ranu
18
91
0
22 Jan 2020
Machine learning and AI-based approaches for bioactive ligand discovery
  and GPCR-ligand recognition
Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition
S. Raschka
Benjamin Kaufman
AI4CE
26
67
0
17 Jan 2020
A Gentle Introduction to Deep Learning for Graphs
A Gentle Introduction to Deep Learning for Graphs
D. Bacciu
Federico Errica
Alessio Micheli
Marco Podda
AI4CE
GNN
51
278
0
29 Dec 2019
Effective Decoding in Graph Auto-Encoder using Triadic Closure
Effective Decoding in Graph Auto-Encoder using Triadic Closure
Han Shi
Haozheng Fan
James T. Kwok
AI4CE
14
39
0
26 Nov 2019
Mixed-curvature Variational Autoencoders
Mixed-curvature Variational Autoencoders
Ondrej Skopek
O. Ganea
Gary Bécigneul
CML
DRL
BDL
30
101
0
19 Nov 2019
Molecular Generative Model Based On Adversarially Regularized
  Autoencoder
Molecular Generative Model Based On Adversarially Regularized Autoencoder
S. Hong
Jaechang Lim
Seongok Ryu
W. Kim
GAN
DRL
GNN
36
64
0
13 Nov 2019
Disentangling Interpretable Generative Parameters of Random and
  Real-World Graphs
Disentangling Interpretable Generative Parameters of Random and Real-World Graphs
Niklas Stoehr
Emine Yilmaz
Marc Brockschmidt
Jan Stuehmer
BDL
CML
DRL
27
14
0
12 Oct 2019
Efficient Graph Generation with Graph Recurrent Attention Networks
Efficient Graph Generation with Graph Recurrent Attention Networks
Renjie Liao
Yujia Li
Yang Song
Shenlong Wang
C. Nash
William L. Hamilton
David Duvenaud
R. Urtasun
R. Zemel
GNN
34
326
0
02 Oct 2019
DeepScaffold: a comprehensive tool for scaffold-based de novo drug
  discovery using deep learning
DeepScaffold: a comprehensive tool for scaffold-based de novo drug discovery using deep learning
Yibo Li
Jianxing Hu
Yanxing Wang
Jielong Zhou
L. Zhang
Zhenming Liu
30
92
0
20 Aug 2019
Image Classification with Hierarchical Multigraph Networks
Image Classification with Hierarchical Multigraph Networks
Boris Knyazev
Xiaoyu Lin
Mohamed R. Amer
Graham W. Taylor
GNN
BDL
25
35
0
21 Jul 2019
Deep Set Prediction Networks
Deep Set Prediction Networks
Yan Zhang
Jonathon S. Hare
Adam Prugel-Bennett
22
108
0
15 Jun 2019
Neural Variational Inference For Estimating Uncertainty in Knowledge
  Graph Embeddings
Neural Variational Inference For Estimating Uncertainty in Knowledge Graph Embeddings
Alexander I. Cowen-Rivers
Pasquale Minervini
Tim Rocktaschel
Matko Bosnjak
Sebastian Riedel
Jun Wang
BDL
31
4
0
12 Jun 2019
A Two-Step Graph Convolutional Decoder for Molecule Generation
A Two-Step Graph Convolutional Decoder for Molecule Generation
Xavier Bresson
T. Laurent
25
60
0
08 Jun 2019
Symmetry-adapted generation of 3d point sets for the targeted discovery
  of molecules
Symmetry-adapted generation of 3d point sets for the targeted discovery of molecules
Niklas W. A. Gebauer
M. Gastegger
Kristof T. Schütt
40
202
0
02 Jun 2019
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular
  string representation
Self-Referencing Embedded Strings (SELFIES): A 100% robust molecular string representation
Mario Krenn
Florian Hase
AkshatKumar Nigam
Pascal Friederich
Alán Aspuru-Guzik
18
70
0
31 May 2019
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
GraphNVP: An Invertible Flow Model for Generating Molecular Graphs
Kaushalya Madhawa
Katushiko Ishiguro
Kosuke Nakago
Motoki Abe
BDL
22
188
0
28 May 2019
Towards Interpretable Sparse Graph Representation Learning with
  Laplacian Pooling
Towards Interpretable Sparse Graph Representation Learning with Laplacian Pooling
Emmanuel Noutahi
Dominique Beaini
Julien Horwood
Sébastien Giguère
Prudencio Tossou
AI4CE
22
34
0
28 May 2019
Adversarial Learned Molecular Graph Inference and Generation
Adversarial Learned Molecular Graph Inference and Generation
Sebastian Polsterl
Christian Wachinger
GAN
36
7
0
24 May 2019
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs
Muhan Zhang
Shali Jiang
Zhicheng Cui
Roman Garnett
Yixin Chen
GNN
BDL
CML
32
198
0
24 Apr 2019
Molecular geometry prediction using a deep generative graph neural
  network
Molecular geometry prediction using a deep generative graph neural network
Elman Mansimov
Omar Mahmood
Seokho Kang
Kyunghyun Cho
28
184
0
31 Mar 2019
Learning to Sample Hard Instances for Graph Algorithms
Learning to Sample Hard Instances for Graph Algorithms
Ryoma Sato
M. Yamada
H. Kashima
19
1
0
26 Feb 2019
A Degeneracy Framework for Scalable Graph Autoencoders
A Degeneracy Framework for Scalable Graph Autoencoders
Guillaume Salha-Galvan
Romain Hennequin
Viet-Anh Tran
Michalis Vazirgiannis
GNN
34
36
0
23 Feb 2019
Deep Learning on Attributed Graphs: A Journey from Graphs to Their
  Embeddings and Back
Deep Learning on Attributed Graphs: A Journey from Graphs to Their Embeddings and Back
M. Simonovsky
BDL
GNN
29
1
0
24 Jan 2019
A Comprehensive Survey on Graph Neural Networks
A Comprehensive Survey on Graph Neural Networks
Zonghan Wu
Shirui Pan
Fengwen Chen
Guodong Long
Chengqi Zhang
Philip S. Yu
FaML
GNN
AI4TS
AI4CE
163
8,385
0
03 Jan 2019
Graph Transformation Policy Network for Chemical Reaction Prediction
Graph Transformation Policy Network for Chemical Reaction Prediction
Kien Do
T. Tran
Svetha Venkatesh
30
158
0
22 Dec 2018
Learning Multimodal Graph-to-Graph Translation for Molecular
  Optimization
Learning Multimodal Graph-to-Graph Translation for Molecular Optimization
Wengong Jin
Kevin Kaichuang Yang
Regina Barzilay
Tommi Jaakkola
33
224
0
03 Dec 2018
Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for
  Molecule Interpretation
Three-Dimensionally Embedded Graph Convolutional Network (3DGCN) for Molecule Interpretation
Hyeoncheol Cho
I. Choi
30
55
0
24 Nov 2018
GuacaMol: Benchmarking Models for De Novo Molecular Design
GuacaMol: Benchmarking Models for De Novo Molecular Design
Nathan Brown
Marco Fiscato
Marwin H. S. Segler
Alain C. Vaucher
ELM
44
693
0
22 Nov 2018
Chemical Structure Elucidation from Mass Spectrometry by Matching
  Substructures
Chemical Structure Elucidation from Mass Spectrometry by Matching Substructures
Jing Lim
Joshua Wong
M. X. Wong
Lee Han Eric Tan
Hai Leong Chieu
Davin Choo
Neng Kai Nigel Neo
29
8
0
17 Nov 2018
Learning to Represent Edits
Learning to Represent Edits
Pengcheng Yin
Graham Neubig
Miltiadis Allamanis
Marc Brockschmidt
Alexander L. Gaunt
KELM
26
112
0
31 Oct 2018
Encoding Robust Representation for Graph Generation
Encoding Robust Representation for Graph Generation
Dongmian Zou
Gilad Lerman
GNN
27
0
0
28 Sep 2018
Graph Convolutional Policy Network for Goal-Directed Molecular Graph
  Generation
Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation
Jiaxuan You
Bowen Liu
Rex Ying
Vijay S. Pande
J. Leskovec
GNN
215
886
0
07 Jun 2018
MolGAN: An implicit generative model for small molecular graphs
MolGAN: An implicit generative model for small molecular graphs
Nicola De Cao
Thomas Kipf
GNN
GAN
35
907
0
30 May 2018
Previous
1234
Next