ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02840
  4. Cited By
Neural Network Renormalization Group

Neural Network Renormalization Group

8 February 2018
Shuo-Hui Li
Lei Wang
    BDL
    DRL
ArXivPDFHTML

Papers citing "Neural Network Renormalization Group"

23 / 23 papers shown
Title
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
56
1
0
11 Mar 2025
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
36
1
0
17 Jan 2025
Generating configurations of increasing lattice size with machine
  learning and the inverse renormalization group
Generating configurations of increasing lattice size with machine learning and the inverse renormalization group
Dimitrios Bachtis
AI4CE
23
1
0
25 May 2024
Deep generative modelling of canonical ensemble with differentiable
  thermal properties
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
31
1
0
29 Apr 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
34
41
0
09 Feb 2024
Statistical Guarantees of Group-Invariant GANs
Statistical Guarantees of Group-Invariant GANs
Ziyu Chen
M. Katsoulakis
Luc Rey-Bellet
Wei-wei Zhu
34
2
0
22 May 2023
Compressing neural network by tensor network with exponentially fewer
  variational parameters
Compressing neural network by tensor network with exponentially fewer variational parameters
Yong Qing
Ke Li
P. Zhou
Shi-Ju Ran
14
6
0
10 May 2023
Neural Diffeomorphic Non-uniform B-spline Flows
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
30
1
0
07 Apr 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
32
27
0
26 Jan 2023
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
24
33
0
14 Nov 2022
Blind Super-Resolution for Remote Sensing Images via Conditional
  Stochastic Normalizing Flows
Blind Super-Resolution for Remote Sensing Images via Conditional Stochastic Normalizing Flows
Hanlin Wu
Ning Ni
Shan Wang
Li-bao Zhang
30
8
0
14 Oct 2022
Deep Variational Free Energy Approach to Dense Hydrogen
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
32
9
0
13 Sep 2022
Nonperturbative renormalization for the neural network-QFT
  correspondence
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
11
30
0
03 Aug 2021
Adding machine learning within Hamiltonians: Renormalization group
  transformations, symmetry breaking and restoration
Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
15
19
0
30 Sep 2020
Sampling using $SU(N)$ gauge equivariant flows
Sampling using SU(N)SU(N)SU(N) gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
20
127
0
12 Aug 2020
Learning entropy production via neural networks
Learning entropy production via neural networks
Dong-Kyum Kim
Youngkyoung Bae
Sangyun Lee
Hawoong Jeong
6
38
0
09 Mar 2020
Stochastic Normalizing Flows
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
37
176
0
16 Feb 2020
Learning the Ising Model with Generative Neural Networks
Learning the Ising Model with Generative Neural Networks
Francesco DÁngelo
Lucas Böttcher
AI4CE
8
28
0
15 Jan 2020
A Probability Density Theory for Spin-Glass Systems
A Probability Density Theory for Spin-Glass Systems
Gavin Hartnett
Masoud Mohseni
11
3
0
03 Jan 2020
Flow-based generative models for Markov chain Monte Carlo in lattice
  field theory
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
12
216
0
26 Apr 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate
  Modeling and Uncertainty Quantification without Labeled Data
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
28
854
0
18 Jan 2019
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
230
2,545
0
25 Jan 2016
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
179
3,262
0
09 Jun 2012
1