Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.02840
Cited By
Neural Network Renormalization Group
8 February 2018
Shuo-Hui Li
Lei Wang
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Network Renormalization Group"
23 / 23 papers shown
Title
Multilevel Generative Samplers for Investigating Critical Phenomena
Ankur Singha
E. Cellini
K. Nicoli
K. Jansen
Stefan Kühn
Shinichi Nakajima
56
1
0
11 Mar 2025
Accurate and thermodynamically consistent hydrogen equation of state for planetary modeling with flow matching
Hao Xie
Saburo Howard
Guglielmo Mazzola
36
1
0
17 Jan 2025
Generating configurations of increasing lattice size with machine learning and the inverse renormalization group
Dimitrios Bachtis
AI4CE
23
1
0
25 May 2024
Deep generative modelling of canonical ensemble with differentiable thermal properties
Shuo-Hui Li
Yao-Wen Zhang
Ding Pan
DRL
SyDa
31
1
0
29 Apr 2024
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
A. Bose
Sarthak Mittal
Pablo Lemos
...
Siamak Ravanbakhsh
Gauthier Gidel
Yoshua Bengio
Nikolay Malkin
Alexander Tong
DiffM
34
41
0
09 Feb 2024
Statistical Guarantees of Group-Invariant GANs
Ziyu Chen
M. Katsoulakis
Luc Rey-Bellet
Wei-wei Zhu
34
2
0
22 May 2023
Compressing neural network by tensor network with exponentially fewer variational parameters
Yong Qing
Ke Li
P. Zhou
Shi-Ju Ran
14
6
0
10 May 2023
Neural Diffeomorphic Non-uniform B-spline Flows
S. Hong
S. Chun
30
1
0
07 Apr 2023
Rigid Body Flows for Sampling Molecular Crystal Structures
Jonas Köhler
Michele Invernizzi
P. D. Haan
Frank Noé
AI4CE
32
27
0
26 Jan 2023
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
24
33
0
14 Nov 2022
Blind Super-Resolution for Remote Sensing Images via Conditional Stochastic Normalizing Flows
Hanlin Wu
Ning Ni
Shan Wang
Li-bao Zhang
30
8
0
14 Oct 2022
Deep Variational Free Energy Approach to Dense Hydrogen
H.-j. Xie
Ziqun Li
Han Wang
Linfeng Zhang
Lei Wang
32
9
0
13 Sep 2022
Nonperturbative renormalization for the neural network-QFT correspondence
Harold Erbin
Vincent Lahoche
D. O. Samary
11
30
0
03 Aug 2021
Adding machine learning within Hamiltonians: Renormalization group transformations, symmetry breaking and restoration
Dimitrios Bachtis
Gert Aarts
B. Lucini
AI4CE
15
19
0
30 Sep 2020
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
20
127
0
12 Aug 2020
Learning entropy production via neural networks
Dong-Kyum Kim
Youngkyoung Bae
Sangyun Lee
Hawoong Jeong
6
38
0
09 Mar 2020
Stochastic Normalizing Flows
Hao Wu
Jonas Köhler
Frank Noé
37
176
0
16 Feb 2020
Learning the Ising Model with Generative Neural Networks
Francesco DÁngelo
Lucas Böttcher
AI4CE
8
28
0
15 Jan 2020
A Probability Density Theory for Spin-Glass Systems
Gavin Hartnett
Masoud Mohseni
11
3
0
03 Jan 2020
Flow-based generative models for Markov chain Monte Carlo in lattice field theory
M. S. Albergo
G. Kanwar
P. Shanahan
AI4CE
12
216
0
26 Apr 2019
Physics-Constrained Deep Learning for High-dimensional Surrogate Modeling and Uncertainty Quantification without Labeled Data
Yinhao Zhu
N. Zabaras
P. Koutsourelakis
P. Perdikaris
PINN
AI4CE
28
854
0
18 Jan 2019
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
230
2,545
0
25 Jan 2016
MCMC using Hamiltonian dynamics
Radford M. Neal
179
3,262
0
09 Jun 2012
1