Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.02538
Cited By
Yes, but Did It Work?: Evaluating Variational Inference
7 February 2018
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Yes, but Did It Work?: Evaluating Variational Inference"
23 / 23 papers shown
Title
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
Siyi Du
Xinzhe Luo
D. O’Regan
Chen Qin
69
0
0
08 Mar 2025
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
38
0
0
31 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
31
1
0
14 Oct 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
70
3
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Bürkner
Lu Zhang
Bob Carpenter
Aki Vehtari
42
6
0
06 Jul 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
71
2
0
20 Mar 2024
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
20
3
0
15 Jun 2023
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Variational Latent Branching Model for Off-Policy Evaluation
Qitong Gao
Ge Gao
Min Chi
Miroslav Pajic
OffRL
36
6
0
28 Jan 2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
29
12
0
27 Oct 2022
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
30
6
0
03 Feb 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
39
26
0
20 Dec 2021
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
24
3
0
27 Oct 2021
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
43
40
0
09 Aug 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
24
40
0
30 Jun 2021
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
22
40
0
15 Jun 2020
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
36
5
0
02 Jun 2020
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
14
15
0
20 Nov 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
32
8
0
23 May 2019
Calibration procedures for approximate Bayesian credible sets
J. Lee
Geoff K. Nicholls
Robin J. Ryder
6
13
0
15 Oct 2018
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with
β
β
β
-Divergences
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
19
56
0
06 Jun 2018
1