ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02538
  4. Cited By
Yes, but Did It Work?: Evaluating Variational Inference
v1v2 (latest)

Yes, but Did It Work?: Evaluating Variational Inference

7 February 2018
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
ArXiv (abs)PDFHTML

Papers citing "Yes, but Did It Work?: Evaluating Variational Inference"

40 / 40 papers shown
Title
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
Siyi Du
Xinzhe Luo
D. O’Regan
Chen Qin
123
0
0
08 Mar 2025
Variational Bayesian Bow tie Neural Networks with Shrinkage
Alisa Sheinkman
Sara Wade
BDLUQCV
100
0
0
17 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
128
0
0
31 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
92
2
0
14 Oct 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
252
4
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
233
1
0
22 Jul 2024
Flexible Tails for Normalizing Flows
Flexible Tails for Normalizing Flows
Tennessee Hickling
Dennis Prangle
59
0
0
22 Jun 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
158
2
0
20 Mar 2024
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
67
3
0
15 Jun 2023
On the Convergence of Black-Box Variational Inference
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
94
17
0
24 May 2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
75
14
0
27 Oct 2022
A fully Bayesian sparse polynomial chaos expansion approach with joint
  priors on the coefficients and global selection of terms
A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms
Paul-Christian Bürkner
Ilja Kroker
S. Oladyshkin
Wolfgang Nowak
70
10
0
12 Apr 2022
Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for
  Approximate Bayesian Inference
Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference
Luca Rendsburg
Agustinus Kristiadi
Philipp Hennig
U. V. Luxburg
67
2
0
07 Mar 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
77
26
0
20 Dec 2021
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
61
3
0
27 Oct 2021
Variational inference for cutting feedback in misspecified models
Variational inference for cutting feedback in misspecified models
Xue Yu
David J. Nott
M. Smith
73
14
0
25 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
134
41
0
09 Aug 2021
q-Paths: Generalizing the Geometric Annealing Path using Power Means
q-Paths: Generalizing the Geometric Annealing Path using Power Means
Vaden Masrani
Rob Brekelmans
T. Bui
Frank Nielsen
Aram Galstyan
Greg Ver Steeg
Frank Wood
264
16
0
01 Jul 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
129
40
0
30 Jun 2021
Monotonic Alpha-divergence Minimisation for Variational Inference
Monotonic Alpha-divergence Minimisation for Variational Inference
Kamélia Daudel
Randal Douc
François Roueff
88
9
0
09 Mar 2021
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric
  Divergence Over Simulations
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over Simulations
Justin Domke
22
9
0
25 Feb 2021
Robust, Accurate Stochastic Optimization for Variational Inference
Robust, Accurate Stochastic Optimization for Variational Inference
Akash Kumar Dhaka
Alejandro Catalina
Michael Riis Andersen
Maans Magnusson
Jonathan H. Huggins
Aki Vehtari
71
34
0
01 Sep 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
98
63
0
22 Jun 2020
Distortion estimates for approximate Bayesian inference
Distortion estimates for approximate Bayesian inference
Hanwen Xing
Geoff K. Nicholls
J. Lee
33
7
0
19 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
102
42
0
15 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCVBDL
58
2
0
04 Jun 2020
The role of exchangeability in causal inference
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
112
7
0
02 Jun 2020
Assessment and adjustment of approximate inference algorithms using the
  law of total variance
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
63
15
0
20 Nov 2019
Validated Variational Inference via Practical Posterior Error Bounds
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan H. Huggins
Mikolaj Kasprzak
Trevor Campbell
Tamara Broderick
90
37
0
09 Oct 2019
Provable Gradient Variance Guarantees for Black-Box Variational
  Inference
Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke
DRL
59
23
0
19 Jun 2019
Automatic Reparameterisation of Probabilistic Programs
Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
71
29
0
07 Jun 2019
Universal Boosting Variational Inference
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
59
32
0
04 Jun 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDLUQCV
71
8
0
23 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
69
60
0
10 May 2019
Bayesian leave-one-out cross-validation for large data
Bayesian leave-one-out cross-validation for large data
Måns Magnusson
Michael Riis Andersen
J. Jonasson
Aki Vehtari
111
26
0
24 Apr 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
74
36
0
24 Jan 2019
Posterior inference unchained with EL_2O
Posterior inference unchained with EL_2O
U. Seljak
Byeonghee Yu
54
10
0
14 Jan 2019
Calibration procedures for approximate Bayesian credible sets
Calibration procedures for approximate Bayesian credible sets
J. Lee
Geoff K. Nicholls
Robin J. Ryder
55
13
0
15 Oct 2018
Variational Bayesian Monte Carlo
Variational Bayesian Monte Carlo
Luigi Acerbi
BDL
68
66
0
12 Oct 2018
Pareto Smoothed Importance Sampling
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
145
242
0
09 Jul 2015
1