Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.02538
Cited By
v1
v2 (latest)
Yes, but Did It Work?: Evaluating Variational Inference
7 February 2018
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Yes, but Did It Work?: Evaluating Variational Inference"
40 / 40 papers shown
Title
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
Siyi Du
Xinzhe Luo
D. O’Regan
Chen Qin
123
0
0
08 Mar 2025
Variational Bayesian Bow tie Neural Networks with Shrinkage
Alisa Sheinkman
Sara Wade
BDL
UQCV
100
0
0
17 Nov 2024
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
128
0
0
31 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
92
2
0
14 Oct 2024
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
252
4
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
233
1
0
22 Jul 2024
Flexible Tails for Normalizing Flows
Tennessee Hickling
Dennis Prangle
59
0
0
22 Jun 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
158
2
0
20 Mar 2024
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
67
3
0
15 Jun 2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
Jisu Oh
Kaiwen Wu
Yi-An Ma
Jacob R. Gardner
BDL
94
17
0
24 May 2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
75
14
0
27 Oct 2022
A fully Bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms
Paul-Christian Bürkner
Ilja Kroker
S. Oladyshkin
Wolfgang Nowak
70
10
0
12 Apr 2022
Discovering Inductive Bias with Gibbs Priors: A Diagnostic Tool for Approximate Bayesian Inference
Luca Rendsburg
Agustinus Kristiadi
Philipp Hennig
U. V. Luxburg
67
2
0
07 Mar 2022
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
77
26
0
20 Dec 2021
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
61
3
0
27 Oct 2021
Variational inference for cutting feedback in misspecified models
Xue Yu
David J. Nott
M. Smith
73
14
0
25 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
134
41
0
09 Aug 2021
q-Paths: Generalizing the Geometric Annealing Path using Power Means
Vaden Masrani
Rob Brekelmans
T. Bui
Frank Nielsen
Aram Galstyan
Greg Ver Steeg
Frank Wood
264
16
0
01 Jul 2021
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi-An Ma
Michael I. Jordan
BDL
129
40
0
30 Jun 2021
Monotonic Alpha-divergence Minimisation for Variational Inference
Kamélia Daudel
Randal Douc
François Roueff
88
9
0
09 Mar 2021
An Easy to Interpret Diagnostic for Approximate Inference: Symmetric Divergence Over Simulations
Justin Domke
22
9
0
25 Feb 2021
Robust, Accurate Stochastic Optimization for Variational Inference
Akash Kumar Dhaka
Alejandro Catalina
Michael Riis Andersen
Maans Magnusson
Jonathan H. Huggins
Aki Vehtari
71
34
0
01 Sep 2020
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
98
63
0
22 Jun 2020
Distortion estimates for approximate Bayesian inference
Hanwen Xing
Geoff K. Nicholls
J. Lee
33
7
0
19 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
102
42
0
15 Jun 2020
Bayesian Neural Network via Stochastic Gradient Descent
Abhinav Sagar
UQCV
BDL
58
2
0
04 Jun 2020
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
112
7
0
02 Jun 2020
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
63
15
0
20 Nov 2019
Validated Variational Inference via Practical Posterior Error Bounds
Jonathan H. Huggins
Mikolaj Kasprzak
Trevor Campbell
Tamara Broderick
90
37
0
09 Oct 2019
Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke
DRL
59
23
0
19 Jun 2019
Automatic Reparameterisation of Probabilistic Programs
Maria I. Gorinova
Dave Moore
Matthew D. Hoffman
71
29
0
07 Jun 2019
Universal Boosting Variational Inference
Trevor Campbell
Xinglong Li
59
32
0
04 Jun 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
71
8
0
23 May 2019
A Contrastive Divergence for Combining Variational Inference and MCMC
Francisco J. R. Ruiz
Michalis K. Titsias
BDL
69
60
0
10 May 2019
Bayesian leave-one-out cross-validation for large data
Måns Magnusson
Michael Riis Andersen
J. Jonasson
Aki Vehtari
111
26
0
24 Apr 2019
Provable Smoothness Guarantees for Black-Box Variational Inference
Justin Domke
74
36
0
24 Jan 2019
Posterior inference unchained with EL_2O
U. Seljak
Byeonghee Yu
54
10
0
14 Jan 2019
Calibration procedures for approximate Bayesian credible sets
J. Lee
Geoff K. Nicholls
Robin J. Ryder
55
13
0
15 Oct 2018
Variational Bayesian Monte Carlo
Luigi Acerbi
BDL
68
66
0
12 Oct 2018
Pareto Smoothed Importance Sampling
Aki Vehtari
Daniel Simpson
Andrew Gelman
Yuling Yao
Jonah Gabry
145
242
0
09 Jul 2015
1