ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.02538
  4. Cited By
Yes, but Did It Work?: Evaluating Variational Inference

Yes, but Did It Work?: Evaluating Variational Inference

7 February 2018
Yuling Yao
Aki Vehtari
Daniel P. Simpson
Andrew Gelman
ArXivPDFHTML

Papers citing "Yes, but Did It Work?: Evaluating Variational Inference"

23 / 23 papers shown
Title
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
STiL: Semi-supervised Tabular-Image Learning for Comprehensive Task-Relevant Information Exploration in Multimodal Classification
Siyi Du
Xinzhe Luo
D. O’Regan
Chen Qin
69
0
0
08 Mar 2025
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
38
0
0
31 Oct 2024
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
Variational Inference in Location-Scale Families: Exact Recovery of the Mean and Correlation Matrix
C. Margossian
Lawrence K. Saul
31
1
0
14 Oct 2024
Amortized Bayesian Multilevel Models
Amortized Bayesian Multilevel Models
Daniel Habermann
Marvin Schmitt
Lars Kühmichel
Andreas Bulling
Stefan T. Radev
Paul-Christian Bürkner
70
3
0
23 Aug 2024
SoftCVI: Contrastive variational inference with self-generated soft labels
SoftCVI: Contrastive variational inference with self-generated soft labels
Daniel Ward
Mark Beaumont
Matteo Fasiolo
BDL
53
0
0
22 Jul 2024
posteriordb: Testing, Benchmarking and Developing Bayesian Inference
  Algorithms
posteriordb: Testing, Benchmarking and Developing Bayesian Inference Algorithms
Måns Magnusson
Jakob Torgander
Paul-Christian Bürkner
Lu Zhang
Bob Carpenter
Aki Vehtari
42
6
0
06 Jul 2024
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
Variational Inference for Uncertainty Quantification: an Analysis of Trade-offs
C. Margossian
Loucas Pillaud-Vivien
Lawrence K. Saul
UD
71
2
0
20 Mar 2024
A Heavy-Tailed Algebra for Probabilistic Programming
A Heavy-Tailed Algebra for Probabilistic Programming
Feynman T. Liang
Liam Hodgkinson
Michael W. Mahoney
20
3
0
15 Jun 2023
Provable convergence guarantees for black-box variational inference
Provable convergence guarantees for black-box variational inference
Justin Domke
Guillaume Garrigos
Robert Mansel Gower
18
18
0
04 Jun 2023
Variational Latent Branching Model for Off-Policy Evaluation
Variational Latent Branching Model for Off-Policy Evaluation
Qitong Gao
Ge Gao
Min Chi
Miroslav Pajic
OffRL
36
6
0
28 Jan 2023
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
ProbNeRF: Uncertainty-Aware Inference of 3D Shapes from 2D Images
Matthew D. Hoffman
T. Le
Pavel Sountsov
Christopher Suter
Ben Lee
Vikash K. Mansinghka
Rif A. Saurous
BDL
29
12
0
27 Oct 2022
Transport Score Climbing: Variational Inference Using Forward KL and
  Adaptive Neural Transport
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang
David M. Blei
C. A. Naesseth
30
6
0
03 Feb 2022
Approximating Bayes in the 21st Century
Approximating Bayes in the 21st Century
G. Martin
David T. Frazier
Christian P. Robert
39
26
0
20 Dec 2021
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
24
3
0
27 Oct 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
43
40
0
09 Aug 2021
Variational Refinement for Importance Sampling Using the Forward
  Kullback-Leibler Divergence
Variational Refinement for Importance Sampling Using the Forward Kullback-Leibler Divergence
Ghassen Jerfel
S. Wang
Clara Fannjiang
Katherine A. Heller
Yi Ma
Michael I. Jordan
BDL
24
40
0
30 Jun 2021
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Variational Bayesian Monte Carlo with Noisy Likelihoods
Variational Bayesian Monte Carlo with Noisy Likelihoods
Luigi Acerbi
22
40
0
15 Jun 2020
The role of exchangeability in causal inference
The role of exchangeability in causal inference
O. Saarela
D. Stephens
E. Moodie
36
5
0
02 Jun 2020
Assessment and adjustment of approximate inference algorithms using the
  law of total variance
Assessment and adjustment of approximate inference algorithms using the law of total variance
Xue Yu
David J. Nott
Minh-Ngoc Tran
Nadja Klein
14
15
0
20 Nov 2019
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian
  Neural Network
Ensemble Model Patching: A Parameter-Efficient Variational Bayesian Neural Network
Oscar Chang
Yuling Yao
David Williams-King
Hod Lipson
BDL
UQCV
32
8
0
23 May 2019
Calibration procedures for approximate Bayesian credible sets
Calibration procedures for approximate Bayesian credible sets
J. Lee
Geoff K. Nicholls
Robin J. Ryder
6
13
0
15 Oct 2018
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with
  $β$-Divergences
Doubly Robust Bayesian Inference for Non-Stationary Streaming Data with βββ-Divergences
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
19
56
0
06 Jun 2018
1