Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.01933
Cited By
v1
v2
v3 (latest)
A Survey Of Methods For Explaining Black Box Models
6 February 2018
Riccardo Guidotti
A. Monreale
Salvatore Ruggieri
Franco Turini
D. Pedreschi
F. Giannotti
XAI
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Survey Of Methods For Explaining Black Box Models"
50 / 1,104 papers shown
Title
Explainable Multi-class Classification of the CAMH COVID-19 Mental Health Data
Yuanzheng Hu
Marina Sokolova
39
7
0
27 May 2021
Efficiently Explaining CSPs with Unsatisfiable Subset Optimization
Emilio Gamba
B. Bogaerts
Tias Guns
LRM
97
7
0
25 May 2021
Argumentative XAI: A Survey
Kristijonas vCyras
Antonio Rago
Emanuele Albini
P. Baroni
Francesca Toni
76
144
0
24 May 2021
On Explaining Random Forests with SAT
Yacine Izza
Sasha Rubin
FAtt
123
75
0
21 May 2021
Yes We Care! -- Certification for Machine Learning Methods through the Care Label Framework
K. Morik
Helena Kotthaus
Raphael Fischer
Sascha Mucke
Matthias Jakobs
Nico Piatkowski
Andrea Pauly
Lukas Heppe
Danny Heinrich
60
11
0
21 May 2021
Probabilistic Sufficient Explanations
Eric Wang
Pasha Khosravi
Guy Van den Broeck
XAI
FAtt
TPM
174
25
0
21 May 2021
A Review on Explainability in Multimodal Deep Neural Nets
Gargi Joshi
Rahee Walambe
K. Kotecha
138
142
0
17 May 2021
A Comprehensive Taxonomy for Explainable Artificial Intelligence: A Systematic Survey of Surveys on Methods and Concepts
Gesina Schwalbe
Bettina Finzel
XAI
153
198
0
15 May 2021
Information-theoretic Evolution of Model Agnostic Global Explanations
Sukriti Verma
Nikaash Puri
Piyush B. Gupta
Balaji Krishnamurthy
FAtt
62
0
0
14 May 2021
Automating Data Science: Prospects and Challenges
Tijl De Bie
Luc de Raedt
José Hernández-Orallo
Holger H. Hoos
Padhraic Smyth
C. Williams
124
38
0
12 May 2021
Towards Dynamic Feature Selection with Attention to Assist Banking Customers in Establishing a New Business
M. Edrisi
32
0
0
09 May 2021
Diff-Explainer: Differentiable Convex Optimization for Explainable Multi-hop Inference
Mokanarangan Thayaparan
Marco Valentino
Deborah Ferreira
Julia Rozanova
André Freitas
120
10
0
07 May 2021
Explainable Autonomous Robots: A Survey and Perspective
Tatsuya Sakai
Takayuki Nagai
67
68
0
06 May 2021
Explainable Artificial Intelligence for Human Decision-Support System in Medical Domain
Samanta Knapic
A. Malhi
Rohit Saluja
Kary Främling
24
102
0
05 May 2021
Rethinking Search: Making Domain Experts out of Dilettantes
Donald Metzler
Yi Tay
Dara Bahri
Marc Najork
LRM
103
47
0
05 May 2021
Learning by Design: Structuring and Documenting the Human Choices in Machine Learning Development
Simon Enni
Ira Assent
24
3
0
03 May 2021
Interpretable Semantic Photo Geolocation
Jonas Theiner
Eric Müller-Budack
Ralph Ewerth
48
30
0
30 Apr 2021
TrustyAI Explainability Toolkit
Rob Geada
Tommaso Teofili
Rui Vieira
Rebecca Whitworth
Daniele Zonca
57
2
0
26 Apr 2021
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
Siham Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
136
78
0
24 Apr 2021
Patch Shortcuts: Interpretable Proxy Models Efficiently Find Black-Box Vulnerabilities
Julia Rosenzweig
Joachim Sicking
Sebastian Houben
Michael Mock
Maram Akila
AAML
99
3
0
22 Apr 2021
SurvNAM: The machine learning survival model explanation
Lev V. Utkin
Egor D. Satyukov
A. Konstantinov
AAML
FAtt
93
30
0
18 Apr 2021
Faithful and Plausible Explanations of Medical Code Predictions
Zach Wood-Doughty
Isabel Cachola
Mark Dredze
14
2
0
16 Apr 2021
LEx: A Framework for Operationalising Layers of Machine Learning Explanations
Ronal Singh
Upol Ehsan
M. Cheong
Mark O. Riedl
Tim Miller
32
4
0
15 Apr 2021
NICE: An Algorithm for Nearest Instance Counterfactual Explanations
Dieter Brughmans
Pieter Leyman
David Martens
81
65
0
15 Apr 2021
Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
Dmitry Kazhdan
B. Dimanov
Helena Andrés-Terré
M. Jamnik
Pietro Lio
Adrian Weller
CoGe
DRL
48
23
0
14 Apr 2021
Model Learning with Personalized Interpretability Estimation (ML-PIE)
M. Virgolin
A. D. Lorenzo
Francesca Randone
Eric Medvet
M. Wahde
101
31
0
13 Apr 2021
Understanding Prediction Discrepancies in Machine Learning Classifiers
X. Renard
Thibault Laugel
Marcin Detyniecki
FaML
84
13
0
12 Apr 2021
Explaining Neural Network Predictions on Sentence Pairs via Learning Word-Group Masks
Hanjie Chen
Song Feng
Jatin Ganhotra
H. Wan
Chulaka Gunasekara
Sachindra Joshi
Yangfeng Ji
73
18
0
09 Apr 2021
Question-Driven Design Process for Explainable AI User Experiences
Q. V. Liao
Milena Pribić
Jaesik Han
Sarah Miller
Daby M. Sow
126
54
0
08 Apr 2021
Sparse Oblique Decision Trees: A Tool to Understand and Manipulate Neural Net Features
Suryabhan Singh Hada
Miguel Á. Carreira-Perpiñán
Arman Zharmagambetov
65
17
0
07 Apr 2021
White Box Methods for Explanations of Convolutional Neural Networks in Image Classification Tasks
Meghna P. Ayyar
J. Benois-Pineau
A. Zemmari
FAtt
34
17
0
06 Apr 2021
Contrastive Explanations for Explaining Model Adaptations
André Artelt
Fabian Hinder
Valerie Vaquet
Robert Feldhans
Barbara Hammer
77
4
0
06 Apr 2021
The Duo of Artificial Intelligence and Big Data for Industry 4.0: Review of Applications, Techniques, Challenges, and Future Research Directions
Senthil Kumar Jagatheesaperumal
Mohamed Rahouti
Kashif Ahmad
Ala I. Al-Fuqaha
Mohsen Guizani
AI4CE
74
19
0
06 Apr 2021
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
85
46
0
06 Apr 2021
Model Compression for Dynamic Forecast Combination
Vítor Cerqueira
Luís Torgo
Carlos Soares
Albert Bifet
AI4TS
AI4CE
27
4
0
05 Apr 2021
Distributed Banach-Picard Iteration for Locally Contractive Maps
Francisco Andrade
Mário A. T. Figueiredo
J. Xavier
51
2
0
31 Mar 2021
Data in context: How digital transformation can support human reasoning in cyber-physical production systems
Romy Müller
F. Kessler
David W. Humphrey
Julian Rahm
20
7
0
31 Mar 2021
Channel-Based Attention for LCC Using Sentinel-2 Time Series
Hermann Courteille
A. Benoît
N. Méger
A. Atto
Dino Ienco
AI4TS
29
1
0
31 Mar 2021
A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms
Ana Lucic
Madhulika Srikumar
Umang Bhatt
Alice Xiang
Ankur Taly
Q. V. Liao
Maarten de Rijke
45
5
0
27 Mar 2021
Explaining Black-Box Algorithms Using Probabilistic Contrastive Counterfactuals
Sainyam Galhotra
Romila Pradhan
Babak Salimi
CML
105
110
0
22 Mar 2021
Weakly Supervised Recovery of Semantic Attributes
Ameen Ali
Tomer Galanti
Evgeniy Zheltonozhskiy
Chaim Baskin
Lior Wolf
49
0
0
22 Mar 2021
Detecting Racial Bias in Jury Selection
Jack Dunn
Ying Daisy Zhuo
55
1
0
22 Mar 2021
Local Interpretations for Explainable Natural Language Processing: A Survey
Siwen Luo
Hamish Ivison
S. Han
Josiah Poon
MILM
120
51
0
20 Mar 2021
Refining Language Models with Compositional Explanations
Huihan Yao
Ying Chen
Qinyuan Ye
Xisen Jin
Xiang Ren
89
36
0
18 Mar 2021
Interpretable Deep Learning for the Remote Characterisation of Ambulation in Multiple Sclerosis using Smartphones
Andrew P. Creagh
F. Lipsmeier
M. Lindemann
M. D. Vos
105
17
0
16 Mar 2021
Interpretability of a Deep Learning Model in the Application of Cardiac MRI Segmentation with an ACDC Challenge Dataset
Adrianna Janik
J. Dodd
Georgiana Ifrim
Kris Sankaran
Kathleen M. Curran
69
27
0
15 Mar 2021
Explaining Credit Risk Scoring through Feature Contribution Alignment with Expert Risk Analysts
Ayoub El Qadi
Natalia Díaz Rodríguez
M. Trocan
Thomas Frossard
17
6
0
15 Mar 2021
A conditional, a fuzzy and a probabilistic interpretation of self-organising maps
Laura Giordano
Valentina Gliozzi
Daniele Theseider Dupré
AI4CE
68
23
0
11 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
74
31
0
10 Mar 2021
Interpretable Machines: Constructing Valid Prediction Intervals with Random Forests
Burim Ramosaj
26
2
0
09 Mar 2021
Previous
1
2
3
...
14
15
16
...
21
22
23
Next