Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.00420
Cited By
v1
v2
v3
v4 (latest)
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
1 February 2018
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples"
50 / 1,929 papers shown
Title
Towards Adversarially Robust Object Detection
Haichao Zhang
Jianyu Wang
AAML
ObjD
139
131
0
24 Jul 2019
Enhancing Adversarial Example Transferability with an Intermediate Level Attack
Qian Huang
Isay Katsman
Horace He
Zeqi Gu
Serge J. Belongie
Ser-Nam Lim
SILM
AAML
109
248
0
23 Jul 2019
Structure-Invariant Testing for Machine Translation
Pinjia He
Clara Meister
Z. Su
75
106
0
19 Jul 2019
Connecting Lyapunov Control Theory to Adversarial Attacks
Arash Rahnama
A. Nguyen
Edward Raff
AAML
29
6
0
17 Jul 2019
Adversarial Security Attacks and Perturbations on Machine Learning and Deep Learning Methods
Arif Siddiqi
AAML
64
11
0
17 Jul 2019
Adversarial Sensor Attack on LiDAR-based Perception in Autonomous Driving
Yulong Cao
Chaowei Xiao
Benjamin Cyr
Yimeng Zhou
Wonseok Park
Sara Rampazzi
Qi Alfred Chen
Kevin Fu
Z. Morley Mao
AAML
63
544
0
16 Jul 2019
Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning
Bao Wang
Stanley J. Osher
AAML
AI4CE
77
10
0
16 Jul 2019
Stateful Detection of Black-Box Adversarial Attacks
Steven Chen
Nicholas Carlini
D. Wagner
AAML
MLAU
69
126
0
12 Jul 2019
Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences
Mathias Kraus
Stefan Feuerriegel
64
110
0
11 Jul 2019
Why Blocking Targeted Adversarial Perturbations Impairs the Ability to Learn
Ziv Katzir
Yuval Elovici
AAML
20
3
0
11 Jul 2019
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
83
72
0
05 Jul 2019
Adversarial Robustness through Local Linearization
Chongli Qin
James Martens
Sven Gowal
Dilip Krishnan
Krishnamurthy Dvijotham
Alhussein Fawzi
Soham De
Robert Stanforth
Pushmeet Kohli
AAML
94
308
0
04 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
152
493
0
03 Jul 2019
Diminishing the Effect of Adversarial Perturbations via Refining Feature Representation
Nader Asadi
Amirm. Sarfi
Mehrdad Hosseinzadeh
Sahba Tahsini
M. Eftekhari
AAML
32
2
0
01 Jul 2019
Accurate, reliable and fast robustness evaluation
Wieland Brendel
Jonas Rauber
Matthias Kümmerer
Ivan Ustyuzhaninov
Matthias Bethge
AAML
OOD
97
113
0
01 Jul 2019
Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Mantas Mazeika
Saurav Kadavath
Basel Alomair
OOD
SSL
69
954
0
28 Jun 2019
Using Intuition from Empirical Properties to Simplify Adversarial Training Defense
Guanxiong Liu
Issa M. Khalil
Abdallah Khreishah
AAML
37
2
0
27 Jun 2019
Evolving Robust Neural Architectures to Defend from Adversarial Attacks
Shashank Kotyan
Danilo Vasconcellos Vargas
OOD
AAML
81
36
0
27 Jun 2019
Defending Adversarial Attacks by Correcting logits
Yifeng Li
Lingxi Xie
Ya Zhang
Rui Zhang
Yanfeng Wang
Qi Tian
AAML
41
5
0
26 Jun 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
89
105
0
25 Jun 2019
Defending Against Adversarial Examples with K-Nearest Neighbor
Chawin Sitawarin
David Wagner
AAML
91
29
0
23 Jun 2019
Improving the robustness of ImageNet classifiers using elements of human visual cognition
A. Orhan
Brenden M. Lake
VLM
60
5
0
20 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
113
109
0
19 Jun 2019
Improving Black-box Adversarial Attacks with a Transfer-based Prior
Shuyu Cheng
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
AAML
94
274
0
17 Jun 2019
MixUp as Directional Adversarial Training
Guillaume P. Archambault
Yongyi Mao
Hongyu Guo
Richong Zhang
AAML
58
23
0
17 Jun 2019
Interpolated Adversarial Training: Achieving Robust Neural Networks without Sacrificing Too Much Accuracy
Alex Lamb
Vikas Verma
Kenji Kawaguchi
Alexander Matyasko
Savya Khosla
Arno Solin
Yoshua Bengio
AAML
74
100
0
16 Jun 2019
Defending Against Adversarial Attacks Using Random Forests
Yifan Ding
Liqiang Wang
Huan Zhang
Jinfeng Yi
Deliang Fan
Boqing Gong
AAML
64
14
0
16 Jun 2019
Representation Quality Of Neural Networks Links To Adversarial Attacks and Defences
Shashank Kotyan
Danilo Vasconcellos Vargas
Moe Matsuki
39
0
0
15 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
109
351
0
14 Jun 2019
Towards Compact and Robust Deep Neural Networks
Vikash Sehwag
Shiqi Wang
Prateek Mittal
Suman Jana
AAML
82
40
0
14 Jun 2019
Adversarial Robustness Assessment: Why both
L
0
L_0
L
0
and
L
∞
L_\infty
L
∞
Attacks Are Necessary
Shashank Kotyan
Danilo Vasconcellos Vargas
AAML
34
8
0
14 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
114
336
0
13 Jun 2019
A Computationally Efficient Method for Defending Adversarial Deep Learning Attacks
R. Sahay
Rehana Mahfuz
Aly El Gamal
AAML
33
5
0
13 Jun 2019
E-LPIPS: Robust Perceptual Image Similarity via Random Transformation Ensembles
M. Kettunen
Erik Härkönen
J. Lehtinen
AAML
65
63
0
10 Jun 2019
Evaluating the Robustness of Nearest Neighbor Classifiers: A Primal-Dual Perspective
Lu Wang
Xuanqing Liu
Jinfeng Yi
Zhi Zhou
Cho-Jui Hsieh
AAML
83
22
0
10 Jun 2019
Robustness Verification of Tree-based Models
Hongge Chen
Huan Zhang
Si Si
Yang Li
Duane S. Boning
Cho-Jui Hsieh
AAML
103
77
0
10 Jun 2019
Improving Neural Language Modeling via Adversarial Training
Dilin Wang
Chengyue Gong
Qiang Liu
AAML
122
119
0
10 Jun 2019
Improved Adversarial Robustness via Logit Regularization Methods
Cecilia Summers
M. Dinneen
AAML
59
7
0
10 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
137
552
0
09 Jun 2019
Adversarial Attack Generation Empowered by Min-Max Optimization
Jingkang Wang
Tianyun Zhang
Sijia Liu
Pin-Yu Chen
Jiacen Xu
M. Fardad
Yangqiu Song
AAML
83
39
0
09 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Maksym Andriushchenko
Matthias Hein
84
62
0
08 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
93
101
0
08 Jun 2019
Making targeted black-box evasion attacks effective and efficient
Mika Juuti
B. Atli
Nadarajah Asokan
AAML
MIACV
MLAU
49
8
0
08 Jun 2019
Robustness for Non-Parametric Classification: A Generic Attack and Defense
Yao-Yuan Yang
Cyrus Rashtchian
Yizhen Wang
Kamalika Chaudhuri
SILM
AAML
92
43
0
07 Jun 2019
A cryptographic approach to black box adversarial machine learning
Kevin Shi
Daniel J. Hsu
Allison Bishop
AAML
18
3
0
07 Jun 2019
Inductive Bias of Gradient Descent based Adversarial Training on Separable Data
Yan Li
Ethan X. Fang
Huan Xu
T. Zhao
92
16
0
07 Jun 2019
Adversarial Explanations for Understanding Image Classification Decisions and Improved Neural Network Robustness
Walt Woods
Jack H Chen
C. Teuscher
AAML
66
46
0
07 Jun 2019
Should Adversarial Attacks Use Pixel p-Norm?
Ayon Sen
Xiaojin Zhu
Liam Marshall
Robert D. Nowak
51
21
0
06 Jun 2019
MNIST-C: A Robustness Benchmark for Computer Vision
Norman Mu
Justin Gilmer
75
214
0
05 Jun 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
58
15
0
05 Jun 2019
Previous
1
2
3
...
31
32
33
...
37
38
39
Next