Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.00121
Cited By
Interpreting CNNs via Decision Trees
1 February 2018
Quanshi Zhang
Yu Yang
Ying Nian Wu
Song-Chun Zhu
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interpreting CNNs via Decision Trees"
38 / 38 papers shown
Title
Safety Implications of Explainable Artificial Intelligence in End-to-End Autonomous Driving
Shahin Atakishiyev
Mohammad Salameh
Randy Goebel
134
6
0
18 Mar 2024
Explaining Deep Convolutional Neural Networks for Image Classification by Evolving Local Interpretable Model-agnostic Explanations
Bin Wang
Wenbin Pei
Bing Xue
Mengjie Zhang
FAtt
93
3
0
28 Nov 2022
Do Explanations make VQA Models more Predictable to a Human?
Arjun Chandrasekaran
Viraj Prabhu
Deshraj Yadav
Prithvijit Chattopadhyay
Devi Parikh
FAtt
102
97
0
29 Oct 2018
Explainable Neural Networks based on Additive Index Models
J. Vaughan
Agus Sudjianto
Erind Brahimi
Jie Chen
V. Nair
32
106
0
05 Jun 2018
Unsupervised Learning of Neural Networks to Explain Neural Networks
Quanshi Zhang
Yu Yang
Yuchen Liu
Ying Nian Wu
Song-Chun Zhu
FAtt
SSL
27
27
0
18 May 2018
Network Transplanting
Quanshi Zhang
Yu Yang
Ying Nian Wu
Song-Chun Zhu
OOD
33
5
0
26 Apr 2018
Visual Interpretability for Deep Learning: a Survey
Quanshi Zhang
Song-Chun Zhu
FaML
HAI
75
812
0
02 Feb 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
44
263
0
10 Jan 2018
Distilling a Neural Network Into a Soft Decision Tree
Nicholas Frosst
Geoffrey E. Hinton
161
635
0
27 Nov 2017
Beyond Sparsity: Tree Regularization of Deep Models for Interpretability
Mike Wu
M. C. Hughes
S. Parbhoo
Maurizio Zazzi
Volker Roth
Finale Doshi-Velez
AI4CE
112
281
0
16 Nov 2017
Examining CNN Representations with respect to Dataset Bias
Quanshi Zhang
Wenguan Wang
Song-Chun Zhu
SSL
FAtt
29
104
0
29 Oct 2017
Dynamic Routing Between Capsules
S. Sabour
Nicholas Frosst
Geoffrey E. Hinton
88
4,584
0
26 Oct 2017
Interpretable Convolutional Neural Networks
Quanshi Zhang
Ying Nian Wu
Song-Chun Zhu
FAtt
48
774
0
02 Oct 2017
Interpreting CNN Knowledge via an Explanatory Graph
Quanshi Zhang
Ruiming Cao
Feng Shi
Ying Nian Wu
Song-Chun Zhu
FAtt
GNN
SSL
39
242
0
05 Aug 2017
A Unified Approach to Interpreting Model Predictions
Scott M. Lundberg
Su-In Lee
FAtt
405
21,459
0
22 May 2017
Learning how to explain neural networks: PatternNet and PatternAttribution
Pieter-Jan Kindermans
Kristof T. Schütt
Maximilian Alber
K. Müller
D. Erhan
Been Kim
Sven Dähne
XAI
FAtt
54
338
0
16 May 2017
Network Dissection: Quantifying Interpretability of Deep Visual Representations
David Bau
Bolei Zhou
A. Khosla
A. Oliva
Antonio Torralba
MILM
FAtt
80
1,503
1
19 Apr 2017
Interpretable Explanations of Black Boxes by Meaningful Perturbation
Ruth C. Fong
Andrea Vedaldi
FAtt
AAML
45
1,514
0
11 Apr 2017
Understanding Black-box Predictions via Influence Functions
Pang Wei Koh
Percy Liang
TDI
134
2,854
0
14 Mar 2017
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
343
3,742
0
28 Feb 2017
Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning
Quanshi Zhang
Ruiming Cao
Ying Nian Wu
Song-Chun Zhu
38
70
0
14 Nov 2016
Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration
Himabindu Lakkaraju
Ece Kamar
R. Caruana
Eric Horvitz
32
150
0
28 Oct 2016
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
200
19,796
0
07 Oct 2016
InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
Xi Chen
Yan Duan
Rein Houthooft
John Schulman
Ilya Sutskever
Pieter Abbeel
GAN
138
4,224
0
12 Jun 2016
The Mythos of Model Interpretability
Zachary Chase Lipton
FaML
110
3,672
0
10 Jun 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
478
16,765
0
16 Feb 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
1.3K
192,638
0
10 Dec 2015
Inverting Visual Representations with Convolutional Networks
Alexey Dosovitskiy
Thomas Brox
SSL
FAtt
54
662
0
09 Jun 2015
Understanding deep features with computer-generated imagery
Mathieu Aubry
Bryan C. Russell
37
148
0
03 Jun 2015
Neural Activation Constellations: Unsupervised Part Model Discovery with Convolutional Networks
Marcel Simon
E. Rodner
54
412
0
30 Apr 2015
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
110
1,279
0
22 Dec 2014
Understanding Deep Image Representations by Inverting Them
Aravindh Mahendran
Andrea Vedaldi
FAtt
86
1,959
0
26 Nov 2014
Part Detector Discovery in Deep Convolutional Neural Networks
Marcel Simon
E. Rodner
Joachim Denzler
ObjD
39
76
0
12 Nov 2014
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
123
8,309
0
06 Nov 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
822
99,991
0
04 Sep 2014
Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts
Xianjie Chen
Roozbeh Mottaghi
Xiaobai Liu
Sanja Fidler
R. Urtasun
Alan Yuille
57
639
0
08 Jun 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
159
14,831
1
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
258
15,825
0
12 Nov 2013
1