Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.10108
Cited By
Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace--Beltrami operator
30 January 2018
Nicolas García Trillos
Moritz Gerlach
Matthias Hein
D. Slepčev
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Error estimates for spectral convergence of the graph Laplacian on random geometric graphs towards the Laplace--Beltrami operator"
50 / 106 papers shown
Title
Manifold learning in metric spaces
Liane Xu
Amit Singer
59
0
0
20 Mar 2025
Measure estimation on a manifold explored by a diffusion process
Vincent Divol
Hélene Guérin
Dinh-Toan Nguyen
Viet Tran
OT
18
0
0
15 Oct 2024
Two-Sample Testing with a Graph-Based Total Variation Integral Probability Metric
Alden Green
Sivaraman Balakrishnan
R. Tibshirani
20
1
0
24 Sep 2024
Spectral Self-supervised Feature Selection
Daniel Segal
Ofir Lindenbaum
Ariel Jaffe
43
0
0
12 Jul 2024
Entropic Optimal Transport Eigenmaps for Nonlinear Alignment and Joint Embedding of High-Dimensional Datasets
Boris Landa
Y. Kluger
Rong Ma
21
0
0
01 Jul 2024
Convergence, optimization and stability of singular eigenmaps
Bernard Akwei
Bobita Atkins
Rachel Bailey
Ashka Dalal
Natalie Dinin
...
Tonya Patricks
Luke Rogers
Genevieve Romanelli
Yiheng Su
Alexander Teplyaev
30
1
0
27 Jun 2024
Temporal label recovery from noisy dynamical data
Y. Khoo
Xin T. Tong
Wanjie Wang
Yuguan Wang
25
2
0
19 Jun 2024
A Manifold Perspective on the Statistical Generalization of Graph Neural Networks
Zhiyang Wang
J. Cerviño
Alejandro Ribeiro
AI4CE
GNN
39
8
0
07 Jun 2024
Nonparametric regression on random geometric graphs sampled from submanifolds
Paul Rosa
Judith Rousseau
42
1
0
31 May 2024
Scalable Bayesian inference for heat kernel Gaussian processes on manifolds
Junhui He
Guoxuan Ma
Jian Kang
Ying Yang
23
0
0
22 May 2024
Random walks on simplicial complexes
Thomas Bonis
Laurent Decreusefond
Viet Chi Tran
Zhihan Iris Zhang
22
1
0
12 Apr 2024
A kernel-based analysis of Laplacian Eigenmaps
Martin Wahl
35
2
0
26 Feb 2024
Nonsmooth Nonparametric Regression via Fractional Laplacian Eigenmaps
Zhaoyang Shi
Krishnakumar Balasubramanian
W. Polonik
30
1
0
22 Feb 2024
Consistency of semi-supervised learning, stochastic tug-of-war games, and the p-Laplacian
Jeff Calder
Nadejda Drenska
35
1
0
15 Jan 2024
Manifold learning: what, how, and why
M. Meilă
Hanyu Zhang
17
55
0
07 Nov 2023
Adaptive and non-adaptive minimax rates for weighted Laplacian-eigenmap based nonparametric regression
Zhaoyang Shi
Krishnakumar Balasubramanian
W. Polonik
22
2
0
31 Oct 2023
Implicit Manifold Gaussian Process Regression
Bernardo Fichera
Viacheslav Borovitskiy
Andreas Krause
A. Billard
18
3
0
30 Oct 2023
Spectral Neural Networks: Approximation Theory and Optimization Landscape
Chenghui Li
Rishi Sonthalia
Nicolas García Trillos
34
1
0
01 Oct 2023
Manifold Filter-Combine Networks
Joyce A. Chew
E. Brouwer
Smita Krishnaswamy
Deanna Needell
Michael Perlmutter
Michael Perlmutter
GNN
28
0
0
08 Jul 2023
Fermat Distances: Metric Approximation, Spectral Convergence, and Clustering Algorithms
Nicolas García Trillos
A. Little
Daniel McKenzie
James M. Murphy
31
4
0
07 Jul 2023
Continuum Limits of Ollivier's Ricci Curvature on data clouds: pointwise consistency and global lower bounds
Nicolas García Trillos
Melanie Weber
17
4
0
05 Jul 2023
Representing and Learning Functions Invariant Under Crystallographic Groups
Ryan P. Adams
Peter Orbanz
29
4
0
08 Jun 2023
Minimum intrinsic dimension scaling for entropic optimal transport
Austin J. Stromme
24
10
0
06 Jun 2023
On Uniform Consistency of Spectral Embeddings
Ruofei Zhao
Songkai Xue
Yuekai Sun
8
0
0
25 Apr 2023
Analysis of a Computational Framework for Bayesian Inverse Problems: Ensemble Kalman Updates and MAP Estimators Under Mesh Refinement
D. Sanz-Alonso
Nathan Waniorek
32
4
0
19 Apr 2023
A few-shot graph Laplacian-based approach for improving the accuracy of low-fidelity data
Orazio Pinti
Assad A. Oberai
23
0
0
29 Mar 2023
Multi-modal Differentiable Unsupervised Feature Selection
Junchen Yang
Ofir Lindenbaum
Y. Kluger
Ariel Jaffe
17
3
0
16 Mar 2023
Consistency of Fractional Graph-Laplacian Regularization in Semi-Supervised Learning with Finite Labels
Adrien Weihs
Matthew Thorpe
8
2
0
14 Mar 2023
Graph Laplacians on Shared Nearest Neighbor graphs and graph Laplacians on
k
k
k
-Nearest Neighbor graphs having the same limit
A. Neuman
15
0
0
24 Feb 2023
Strong uniform convergence of Laplacians of random geometric and directed kNN graphs on compact manifolds
Hélene Guérin
Dinh-Toan Nguyen
Viet Tran
17
2
0
20 Dec 2022
Quadratically Regularized Optimal Transport: nearly optimal potentials and convergence of discrete Laplace operators
Gilles Mordant
Stephen X. Zhang
OT
19
0
0
20 Nov 2022
A Unified Analysis of Multi-task Functional Linear Regression Models with Manifold Constraint and Composite Quadratic Penalty
Shiyuan He
Hanxuan Ye
Kejun He
21
0
0
09 Nov 2022
Poisson Reweighted Laplacian Uncertainty Sampling for Graph-based Active Learning
Kevin Miller
Jeff Calder
21
6
0
27 Oct 2022
Optimization on Manifolds via Graph Gaussian Processes
Hwanwoo Kim
D. Sanz-Alonso
Ruiyi Yang
40
2
0
20 Oct 2022
Robust Inference of Manifold Density and Geometry by Doubly Stochastic Scaling
Boris Landa
Xiuyuan Cheng
36
6
0
16 Sep 2022
Large data limit of the MBO scheme for data clustering: convergence of the dynamics
Tim Laux
Jona Lelmi
37
7
0
13 Sep 2022
Rates of Convergence for Regression with the Graph Poly-Laplacian
Nicolas García Trillos
Ryan W. Murray
Matthew Thorpe
32
4
0
06 Sep 2022
Physics-Informed Deep Neural Operator Networks
S. Goswami
Aniruddha Bora
Yue Yu
George Karniadakis
PINN
AI4CE
31
99
0
08 Jul 2022
Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise
Xiuyuan Cheng
Boris Landa
31
3
0
22 Jun 2022
SpecNet2: Orthogonalization-free spectral embedding by neural networks
Ziyu Chen
Yingzhou Li
Xiuyuan Cheng
24
4
0
14 Jun 2022
Learning Low-Dimensional Nonlinear Structures from High-Dimensional Noisy Data: An Integral Operator Approach
Xiucai Ding
Rongkai Ma
44
9
0
28 Feb 2022
Hamilton-Jacobi equations on graphs with applications to semi-supervised learning and data depth
Jeff Calder
Mahmood Ettehad
27
15
0
17 Feb 2022
Eikonal depth: an optimal control approach to statistical depths
M. Molina-Fructuoso
Ryan W. Murray
MDE
26
4
0
14 Jan 2022
Entropic Optimal Transport in Random Graphs
Nicolas Keriven
OT
18
4
0
11 Jan 2022
Manifold learning via quantum dynamics
Akshat Kumar
M. Sarovar
26
0
0
20 Dec 2021
Uniform Convergence Rates for Lipschitz Learning on Graphs
Leon Bungert
Jeff Calder
Tim Roith
21
20
0
24 Nov 2021
How do kernel-based sensor fusion algorithms behave under high dimensional noise?
Xiucai Ding
Hau‐Tieng Wu
16
4
0
22 Nov 2021
Minimax Optimal Regression over Sobolev Spaces via Laplacian Eigenmaps on Neighborhood Graphs
Alden Green
Sivaraman Balakrishnan
R. Tibshirani
19
12
0
14 Nov 2021
Boundary Estimation from Point Clouds: Algorithms, Guarantees and Applications
Jeff Calder
Sangmin Park
D. Slepčev
3DPC
25
10
0
05 Nov 2021
Topologically penalized regression on manifolds
Olympio Hacquard
Krishnakumar Balasubramanian
Gilles Blanchard
Clément Levrard
W. Polonik
18
4
0
26 Oct 2021
1
2
3
Next