Adaptive and non-adaptive minimax rates for weighted Laplacian-eigenmap based nonparametric regression

Abstract
We show both adaptive and non-adaptive minimax rates of convergence for a family of weighted Laplacian-Eigenmap based nonparametric regression methods, when the true regression function belongs to a Sobolev space and the sampling density is bounded from above and below. The adaptation methodology is based on extensions of Lepski's method and is over both the smoothness parameter () and the norm parameter () determining the constraints on the Sobolev space. Our results extend the non-adaptive result in \cite{green2021minimax}, established for a specific normalized graph Laplacian, to a wide class of weighted Laplacian matrices used in practice, including the unnormalized Laplacian and random walk Laplacian.
View on arXivComments on this paper