ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.07648
  4. Cited By
Clustering with Deep Learning: Taxonomy and New Methods

Clustering with Deep Learning: Taxonomy and New Methods

23 January 2018
Elie Aljalbout
Vladimir Golkov
Yawar Siddiqui
Maximilian Strobel
Daniel Cremers
ArXivPDFHTML

Papers citing "Clustering with Deep Learning: Taxonomy and New Methods"

18 / 18 papers shown
Title
Unsupervised Learning via Network-Aware Embeddings
Unsupervised Learning via Network-Aware Embeddings
Anne Sophie Riis Damstrup
Sofie Tosti Madsen
Michele Coscia
SSL
43
0
0
19 Sep 2023
Unsupervised Embedding Learning for Human Activity Recognition Using
  Wearable Sensor Data
Unsupervised Embedding Learning for Human Activity Recognition Using Wearable Sensor Data
Taoran Sheng
M. Huber
SSL
19
10
0
21 Jul 2023
Clustering with Neural Network and Index
Clustering with Neural Network and Index
Gang Liu
25
2
0
05 Dec 2022
Deep Clustering: A Comprehensive Survey
Deep Clustering: A Comprehensive Survey
Yazhou Ren
Jingyu Pu
Zhimeng Yang
Jie Xu
Guofeng Li
X. Pu
Philip S. Yu
Lifang He
HAI
43
100
0
09 Oct 2022
Visualizing the embedding space to explain the effect of knowledge
  distillation
Visualizing the embedding space to explain the effect of knowledge distillation
Hyun Seung Lee
C. Wallraven
14
1
0
09 Oct 2021
A multi-stage semi-supervised improved deep embedded clustering method
  for bearing fault diagnosis under the situation of insufficient labeled
  samples
A multi-stage semi-supervised improved deep embedded clustering method for bearing fault diagnosis under the situation of insufficient labeled samples
Tong Sun
Gang Yu
21
0
0
28 Sep 2021
Deep Learning and Traffic Classification: Lessons learned from a
  commercial-grade dataset with hundreds of encrypted and zero-day applications
Deep Learning and Traffic Classification: Lessons learned from a commercial-grade dataset with hundreds of encrypted and zero-day applications
Lixuan Yang
A. Finamore
Feng Jun
Dario Rossi
22
47
0
07 Apr 2021
A Framework for Deep Constrained Clustering
A Framework for Deep Constrained Clustering
Hongjing Zhang
Tianyang Zhan
Sugato Basu
Ian Davidson
24
31
0
07 Jan 2021
Dissimilarity Mixture Autoencoder for Deep Clustering
Dissimilarity Mixture Autoencoder for Deep Clustering
Juan S. Lara
Fabio A. González
22
5
0
15 Jun 2020
MorphoCluster: Efficient Annotation of Plankton images by Clustering
MorphoCluster: Efficient Annotation of Plankton images by Clustering
Simon-Martin Schroder
R. Kiko
Reinhard Koch
43
46
0
04 May 2020
Memory-Based Graph Networks
Memory-Based Graph Networks
Amir Hosein Khas Ahmadi
Kaveh Hassani
Parsa Moradi
Leo Lee
Q. Morris
GNN
29
90
0
21 Feb 2020
Speaker diarization using latent space clustering in generative
  adversarial network
Speaker diarization using latent space clustering in generative adversarial network
Monisankha Pal
Manoj Kumar
Raghuveer Peri
Tae Jin Park
So Hyun Kim
C. Lord
Somer Bishop
Shrikanth Narayanan
16
20
0
24 Oct 2019
Quantization-Based Regularization for Autoencoders
Quantization-Based Regularization for Autoencoders
Hanwei Wu
M. Flierl
DRL
6
2
0
27 May 2019
Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning
Point Cloud Oversegmentation with Graph-Structured Deep Metric Learning
Loic Landrieu
Mohamed Boussaha
3DPC
25
150
0
03 Apr 2019
Survey of state-of-the-art mixed data clustering algorithms
Survey of state-of-the-art mixed data clustering algorithms
Amir Ahmad
Shehroz S. Khan
13
170
0
11 Nov 2018
Improving Image Clustering With Multiple Pretrained CNN Feature
  Extractors
Improving Image Clustering With Multiple Pretrained CNN Feature Extractors
Joris Guérin
Byron Boots
17
31
0
20 Jul 2018
Learning Neural Models for End-to-End Clustering
Learning Neural Models for End-to-End Clustering
B. Meier
Ismail Elezi
Mohammadreza Amirian
Oliver Durr
Thilo Stadelmann
SSL
22
16
0
11 Jul 2018
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
Vincent Fortuin
Matthias Huser
Francesco Locatello
Heiko Strathmann
Gunnar Rätsch
BDL
AI4TS
32
140
0
06 Jun 2018
1