Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1801.05453
Cited By
Beyond Word Importance: Contextual Decomposition to Extract Interactions from LSTMs
16 January 2018
W. James Murdoch
Peter J. Liu
Bin Yu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Beyond Word Importance: Contextual Decomposition to Extract Interactions from LSTMs"
50 / 54 papers shown
Title
KernelSHAP-IQ: Weighted Least-Square Optimization for Shapley Interactions
Fabian Fumagalli
Maximilian Muschalik
Patrick Kolpaczki
Eyke Hüllermeier
Barbara Hammer
43
6
0
17 May 2024
Interpretable Long-Form Legal Question Answering with Retrieval-Augmented Large Language Models
Antoine Louis
Gijs van Dijck
Gerasimos Spanakis
ELM
AILaw
30
35
0
29 Sep 2023
Single-Class Target-Specific Attack against Interpretable Deep Learning Systems
Eldor Abdukhamidov
Mohammed Abuhamad
George K. Thiruvathukal
Hyoungshick Kim
Tamer Abuhmed
AAML
27
2
0
12 Jul 2023
A semantically enhanced dual encoder for aspect sentiment triplet extraction
Baoxing Jiang
Shehui Liang
Peiyu Liu
Kaifang Dong
Hongye Li
27
15
0
14 Jun 2023
DEGREE: Decomposition Based Explanation For Graph Neural Networks
Qizhang Feng
Ninghao Liu
Fan Yang
Ruixiang Tang
Mengnan Du
Xia Hu
30
22
0
22 May 2023
Learning with Explanation Constraints
Rattana Pukdee
Dylan Sam
J. Zico Kolter
Maria-Florina Balcan
Pradeep Ravikumar
FAtt
34
6
0
25 Mar 2023
Does a Neural Network Really Encode Symbolic Concepts?
Mingjie Li
Quanshi Zhang
29
30
0
25 Feb 2023
Relational Local Explanations
V. Borisov
Gjergji Kasneci
FAtt
22
0
0
23 Dec 2022
Generating Hierarchical Explanations on Text Classification Without Connecting Rules
Yiming Ju
Yuanzhe Zhang
Kang Liu
Jun Zhao
FAtt
26
3
0
24 Oct 2022
Feature Importance for Time Series Data: Improving KernelSHAP
M. Villani
J. Lockhart
Daniele Magazzeni
FAtt
AI4TS
40
6
0
05 Oct 2022
From Attribution Maps to Human-Understandable Explanations through Concept Relevance Propagation
Reduan Achtibat
Maximilian Dreyer
Ilona Eisenbraun
S. Bosse
Thomas Wiegand
Wojciech Samek
Sebastian Lapuschkin
FAtt
36
134
0
07 Jun 2022
A Fine-grained Interpretability Evaluation Benchmark for Neural NLP
Lijie Wang
Yaozong Shen
Shu-ping Peng
Shuai Zhang
Xinyan Xiao
Hao Liu
Hongxuan Tang
Ying-Cong Chen
Hua Wu
Haifeng Wang
ELM
19
21
0
23 May 2022
FaiRR: Faithful and Robust Deductive Reasoning over Natural Language
Soumya Sanyal
Harman Singh
Xiang Ren
ReLM
LRM
32
45
0
19 Mar 2022
Right for the Right Latent Factors: Debiasing Generative Models via Disentanglement
Xiaoting Shao
Karl Stelzner
Kristian Kersting
CML
DRL
29
3
0
01 Feb 2022
Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View
Di Jin
Elena Sergeeva
W. Weng
Geeticka Chauhan
Peter Szolovits
OOD
44
55
0
05 Dec 2021
Machine Learning for Multimodal Electronic Health Records-based Research: Challenges and Perspectives
Ziyi Liu
Jiaqi Zhang
Yongshuai Hou
Xinran Zhang
Ge Li
Yang Xiang
19
14
0
09 Nov 2021
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
19
45
0
20 Oct 2021
Discretized Integrated Gradients for Explaining Language Models
Soumya Sanyal
Xiang Ren
FAtt
17
53
0
31 Aug 2021
Neuron-level Interpretation of Deep NLP Models: A Survey
Hassan Sajjad
Nadir Durrani
Fahim Dalvi
MILM
AI4CE
35
82
0
30 Aug 2021
Shapley Explanation Networks
Rui Wang
Xiaoqian Wang
David I. Inouye
TDI
FAtt
27
44
0
06 Apr 2021
A Unified Game-Theoretic Interpretation of Adversarial Robustness
Jie Ren
Die Zhang
Yisen Wang
Lu Chen
Zhanpeng Zhou
...
Xu Cheng
Xin Eric Wang
Meng Zhou
Jie Shi
Quanshi Zhang
AAML
72
22
0
12 Mar 2021
On the Post-hoc Explainability of Deep Echo State Networks for Time Series Forecasting, Image and Video Classification
Alejandro Barredo Arrieta
S. Gil-Lopez
I. Laña
Miren Nekane Bilbao
Javier Del Ser
AI4TS
41
13
0
17 Feb 2021
Self-Explaining Structures Improve NLP Models
Zijun Sun
Chun Fan
Qinghong Han
Xiaofei Sun
Yuxian Meng
Fei Wu
Jiwei Li
MILM
XAI
LRM
FAtt
46
38
0
03 Dec 2020
Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations
Wolfgang Stammer
P. Schramowski
Kristian Kersting
FAtt
14
107
0
25 Nov 2020
Generating Plausible Counterfactual Explanations for Deep Transformers in Financial Text Classification
Linyi Yang
Eoin M. Kenny
T. L. J. Ng
Yi Yang
Barry Smyth
Ruihai Dong
15
70
0
23 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Eric Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
29
94
0
08 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
15
63
0
01 Oct 2020
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
M. Schlichtkrull
Nicola De Cao
Ivan Titov
AI4CE
36
214
0
01 Oct 2020
Interpretable Anomaly Detection with DIFFI: Depth-based Isolation Forest Feature Importance
Mattia Carletti
M. Terzi
Gian Antonio Susto
36
42
0
21 Jul 2020
Feature Interaction Interpretability: A Case for Explaining Ad-Recommendation Systems via Neural Interaction Detection
Michael Tsang
Dehua Cheng
Hanpeng Liu
Xuening Feng
Eric Zhou
Yan Liu
FAtt
24
60
0
19 Jun 2020
Contextualizing Hate Speech Classifiers with Post-hoc Explanation
Brendan Kennedy
Xisen Jin
Aida Mostafazadeh Davani
Morteza Dehghani
Xiang Ren
22
138
0
05 May 2020
Explainable Deep Learning: A Field Guide for the Uninitiated
Gabrielle Ras
Ning Xie
Marcel van Gerven
Derek Doran
AAML
XAI
43
371
0
30 Apr 2020
Sequential Interpretability: Methods, Applications, and Future Direction for Understanding Deep Learning Models in the Context of Sequential Data
B. Shickel
Parisa Rashidi
AI4TS
33
17
0
27 Apr 2020
How recurrent networks implement contextual processing in sentiment analysis
Niru Maheswaranathan
David Sussillo
22
22
0
17 Apr 2020
Generating Hierarchical Explanations on Text Classification via Feature Interaction Detection
Hanjie Chen
Guangtao Zheng
Yangfeng Ji
FAtt
36
92
0
04 Apr 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
29
485
0
12 Feb 2020
Explaining Explanations: Axiomatic Feature Interactions for Deep Networks
Joseph D. Janizek
Pascal Sturmfels
Su-In Lee
FAtt
30
143
0
10 Feb 2020
Explaining and Interpreting LSTMs
L. Arras
Jose A. Arjona-Medina
Michael Widrich
G. Montavon
Michael Gillhofer
K. Müller
Sepp Hochreiter
Wojciech Samek
FAtt
AI4TS
21
79
0
25 Sep 2019
Analysing Neural Language Models: Contextual Decomposition Reveals Default Reasoning in Number and Gender Assignment
Jaap Jumelet
Willem H. Zuidema
Dieuwke Hupkes
LRM
33
37
0
19 Sep 2019
Interpretable and Steerable Sequence Learning via Prototypes
Yao Ming
Panpan Xu
Huamin Qu
Liu Ren
AI4TS
12
138
0
23 Jul 2019
Reverse engineering recurrent networks for sentiment classification reveals line attractor dynamics
Niru Maheswaranathan
Alex H. Williams
Matthew D. Golub
Surya Ganguli
David Sussillo
26
78
0
25 Jun 2019
Incorporating Priors with Feature Attribution on Text Classification
Frederick Liu
Besim Avci
FAtt
FaML
33
120
0
19 Jun 2019
Exploring Interpretable LSTM Neural Networks over Multi-Variable Data
Tian Guo
Tao R. Lin
Nino Antulov-Fantulin
AI4TS
26
154
0
28 May 2019
Disentangled Attribution Curves for Interpreting Random Forests and Boosted Trees
Summer Devlin
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
19
14
0
18 May 2019
Veridical Data Science
Bin Yu
Karl Kumbier
23
162
0
23 Jan 2019
Interpretable machine learning: definitions, methods, and applications
W. James Murdoch
Chandan Singh
Karl Kumbier
R. Abbasi-Asl
Bin-Xia Yu
XAI
HAI
49
1,421
0
14 Jan 2019
Can I trust you more? Model-Agnostic Hierarchical Explanations
Michael Tsang
Youbang Sun
Dongxu Ren
Yan Liu
FAtt
16
25
0
12 Dec 2018
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
30
169
0
03 Dec 2018
What made you do this? Understanding black-box decisions with sufficient input subsets
Brandon Carter
Jonas W. Mueller
Siddhartha Jain
David K Gifford
FAtt
39
77
0
09 Oct 2018
Interpreting Neural Networks With Nearest Neighbors
Eric Wallace
Shi Feng
Jordan L. Boyd-Graber
AAML
FAtt
MILM
20
53
0
08 Sep 2018
1
2
Next