ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1801.03558
  4. Cited By
Inference Suboptimality in Variational Autoencoders

Inference Suboptimality in Variational Autoencoders

10 January 2018
Chris Cremer
Xuechen Li
David Duvenaud
    DRL
    BDL
ArXivPDFHTML

Papers citing "Inference Suboptimality in Variational Autoencoders"

50 / 67 papers shown
Title
Bayesian Computation in Deep Learning
Bayesian Computation in Deep Learning
Wenlong Chen
Bolian Li
Ruqi Zhang
Yingzhen Li
BDL
75
0
0
25 Feb 2025
Generative Adversarial Networks for High-Dimensional Item Factor Analysis: A Deep Adversarial Learning Algorithm
Nanyu Luo
Feng Ji
DRL
41
0
0
15 Feb 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
41
1
0
31 Dec 2024
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
91
1
0
25 Nov 2024
Brain-like variational inference
Brain-like variational inference
Hadi Vafaii
Dekel Galor
Jacob L. Yates
DRL
49
0
0
25 Oct 2024
Improving Variational Autoencoder Estimation from Incomplete Data with
  Mixture Variational Families
Improving Variational Autoencoder Estimation from Incomplete Data with Mixture Variational Families
Vaidotas Šimkus
Michael U. Gutmann
40
2
0
05 Mar 2024
Domain Generalization with Small Data
Domain Generalization with Small Data
Kecheng Chen
Elena Gal
Hong Yan
Haoliang Li
OOD
27
5
0
09 Feb 2024
Robustly overfitting latents for flexible neural image compression
Robustly overfitting latents for flexible neural image compression
Yura Perugachi-Diaz
Arwin Gansekoele
S. Bhulai
44
1
0
31 Jan 2024
Variational Distribution Learning for Unsupervised Text-to-Image
  Generation
Variational Distribution Learning for Unsupervised Text-to-Image Generation
Minsoo Kang
Doyup Lee
Jiseob Kim
Saehoon Kim
Bohyung Han
DRL
OOD
22
3
0
28 Mar 2023
Unsupervised Domain Adaptation for Low-dose CT Reconstruction via
  Bayesian Uncertainty Alignment
Unsupervised Domain Adaptation for Low-dose CT Reconstruction via Bayesian Uncertainty Alignment
Kecheng Chen
Jie Liu
Renjie Wan
Victor Ho-Fun Lee
Varut Vardhanabhuti
Hong Yan
Haoliang Li
OOD
26
5
0
26 Feb 2023
Variational Mixture of HyperGenerators for Learning Distributions Over
  Functions
Variational Mixture of HyperGenerators for Learning Distributions Over Functions
Batuhan Koyuncu
Pablo Sánchez-Martín
I. Peis
Pablo Martínez Olmos
Isabel Valera
BDL
GAN
DRL
25
5
0
13 Feb 2023
DGNet: Distribution Guided Efficient Learning for Oil Spill Image
  Segmentation
DGNet: Distribution Guided Efficient Learning for Oil Spill Image Segmentation
Fang Chen
H. Balzter
Feixiang Zhou
Pengxin Ren
Huiyu Zhou
25
13
0
19 Dec 2022
Variational Laplace Autoencoders
Variational Laplace Autoencoders
Yookoon Park
C. Kim
Gunhee Kim
BDL
DRL
26
21
0
30 Nov 2022
Toward Adaptive Semantic Communications: Efficient Data Transmission via
  Online Learned Nonlinear Transform Source-Channel Coding
Toward Adaptive Semantic Communications: Efficient Data Transmission via Online Learned Nonlinear Transform Source-Channel Coding
Jincheng Dai
Sixian Wang
Ke Yang
Kailin Tan
Xiaoqi Qin
Zhongwei Si
K. Niu
Ping Zhang
25
20
0
08 Nov 2022
Reducing The Mismatch Between Marginal and Learned Distributions in
  Neural Video Compression
Reducing The Mismatch Between Marginal and Learned Distributions in Neural Video Compression
M. Balcilar
B. Damodaran
Pierre Hellier
23
2
0
12 Oct 2022
Improving The Reconstruction Quality by Overfitted Decoder Bias in
  Neural Image Compression
Improving The Reconstruction Quality by Overfitted Decoder Bias in Neural Image Compression
Oussama Jourairi
M. Balcilar
Anne Lambert
Franccois Schnitzler
15
4
0
10 Oct 2022
Variational Open-Domain Question Answering
Variational Open-Domain Question Answering
Valentin Liévin
Andreas Geert Motzfeldt
Ida Riis Jensen
Ole Winther
OOD
BDL
36
8
0
23 Sep 2022
Bit Allocation using Optimization
Bit Allocation using Optimization
Tongda Xu
Han-yi Gao
Chenjian Gao
Yuanyuan Wang
Dailan He
...
Mao Ye
Hongwei Qin
Yan Wang
Jingjing Liu
Ya-Qin Zhang
56
14
0
20 Sep 2022
Flexible Neural Image Compression via Code Editing
Flexible Neural Image Compression via Code Editing
Chenjian Gao
Tongda Xu
Dailan He
Hongwei Qin
Yan Wang
46
24
0
19 Sep 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
32
21
0
15 Sep 2022
Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
  Compression
Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image Compression
M. Balcilar
B. Damodaran
Pierre Hellier
21
8
0
02 Sep 2022
PAVI: Plate-Amortized Variational Inference
PAVI: Plate-Amortized Variational Inference
Louis Rouillard
Thomas Moreau
Demian Wassermann
25
1
0
10 Jun 2022
Generalization Gap in Amortized Inference
Generalization Gap in Amortized Inference
Mingtian Zhang
Peter Hayes
David Barber
BDL
CML
DRL
45
14
0
23 May 2022
Hybrid Predictive Coding: Inferring, Fast and Slow
Hybrid Predictive Coding: Inferring, Fast and Slow
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
27
36
0
05 Apr 2022
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
Anna Kuzina
Max Welling
Jakub M. Tomczak
AAML
DRL
31
12
0
18 Mar 2022
Learning Neural Set Functions Under the Optimal Subset Oracle
Learning Neural Set Functions Under the Optimal Subset Oracle
Zijing Ou
Tingyang Xu
Qinliang Su
Yingzhen Li
P. Zhao
Yatao Bian
BDL
18
9
0
03 Mar 2022
Model-agnostic out-of-distribution detection using combined statistical
  tests
Model-agnostic out-of-distribution detection using combined statistical tests
Federico Bergamin
Pierre-Alexandre Mattei
Jakob Drachmann Havtorn
Hugo Senetaire
Hugo Schmutz
Lars Maaløe
Søren Hauberg
J. Frellsen
OODD
24
18
0
02 Mar 2022
Tutorial on amortized optimization
Tutorial on amortized optimization
Brandon Amos
OffRL
75
43
0
01 Feb 2022
Unsupervised Representation Learning via Neural Activation Coding
Unsupervised Representation Learning via Neural Activation Coding
Yookoon Park
Sangho Lee
Gunhee Kim
David M. Blei
SSL
23
8
0
07 Dec 2021
Counterfactual Explanations via Latent Space Projection and
  Interpolation
Counterfactual Explanations via Latent Space Projection and Interpolation
Brian Barr
Matthew R. Harrington
Samuel Sharpe
Capital One
BDL
33
10
0
02 Dec 2021
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance
Jiachen Xu
Min Wang
Jing-yu Gong
Wentao Liu
Chao Qian
Yuan Xie
Lizhuang Ma
33
9
0
25 Nov 2021
Relay Variational Inference: A Method for Accelerated Encoderless VI
Relay Variational Inference: A Method for Accelerated Encoderless VI
Amir Zadeh
Santiago Benoit
Louis-Philippe Morency
DRL
17
1
0
26 Oct 2021
Learning Opinion Summarizers by Selecting Informative Reviews
Learning Opinion Summarizers by Selecting Informative Reviews
Arthur Brazinskas
Mirella Lapata
Ivan Titov
53
29
0
09 Sep 2021
Meta-learning Amidst Heterogeneity and Ambiguity
Meta-learning Amidst Heterogeneity and Ambiguity
Kyeongryeol Go
Seyoung Yun
26
1
0
05 Jul 2021
ADAVI: Automatic Dual Amortized Variational Inference Applied To
  Pyramidal Bayesian Models
ADAVI: Automatic Dual Amortized Variational Inference Applied To Pyramidal Bayesian Models
Louis Rouillard
Demian Wassermann
36
2
0
23 Jun 2021
Generative Text Modeling through Short Run Inference
Generative Text Modeling through Short Run Inference
Bo Pang
Erik Nijkamp
Tian Han
Ying Nian Wu
SyDa
BDL
DRL
24
5
0
27 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
36
61
0
30 Apr 2021
NeRF-VAE: A Geometry Aware 3D Scene Generative Model
NeRF-VAE: A Geometry Aware 3D Scene Generative Model
Adam R. Kosiorek
Heiko Strathmann
Daniel Zoran
Pol Moreno
R. Schneider
Sovna Mokrá
Danilo Jimenez Rezende
DRL
29
139
0
01 Apr 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
481
0
08 Mar 2021
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Deep Adaptive Design: Amortizing Sequential Bayesian Experimental Design
Adam Foster
Desi R. Ivanova
Ilyas Malik
Tom Rainforth
28
78
0
03 Mar 2021
COIN: COmpression with Implicit Neural representations
COIN: COmpression with Implicit Neural representations
Emilien Dupont
Adam Goliñski
Milad Alizadeh
Yee Whye Teh
Arnaud Doucet
23
223
0
03 Mar 2021
Direct Evolutionary Optimization of Variational Autoencoders With Binary
  Latents
Direct Evolutionary Optimization of Variational Autoencoders With Binary Latents
E. Guiraud
Jakob Drefs
Jörg Lücke
DRL
33
3
0
27 Nov 2020
Scalable Gaussian Process Variational Autoencoders
Scalable Gaussian Process Variational Autoencoders
Metod Jazbec
Matthew Ashman
Vincent Fortuin
Michael Pearce
Stephan Mandt
Gunnar Rätsch
DRL
BDL
18
25
0
26 Oct 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
22
15
0
22 Oct 2020
Neural Network-based Reconstruction in Compressed Sensing MRI Without
  Fully-sampled Training Data
Neural Network-based Reconstruction in Compressed Sensing MRI Without Fully-sampled Training Data
Alan Q. Wang
Adrian V. Dalca
M. Sabuncu
31
26
0
29 Jul 2020
Failure Modes of Variational Autoencoders and Their Effects on
  Downstream Tasks
Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks
Yaniv Yacoby
Weiwei Pan
Finale Doshi-Velez
CML
DRL
27
25
0
14 Jul 2020
Control as Hybrid Inference
Control as Hybrid Inference
Alexander Tschantz
Beren Millidge
A. Seth
Christopher L. Buckley
19
9
0
11 Jul 2020
Bayesian Neural Networks: An Introduction and Survey
Bayesian Neural Networks: An Introduction and Survey
Ethan Goan
Clinton Fookes
BDL
UQCV
35
199
0
22 Jun 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
34
61
0
27 Apr 2020
Going in circles is the way forward: the role of recurrence in visual
  inference
Going in circles is the way forward: the role of recurrence in visual inference
R. S. V. Bergen
N. Kriegeskorte
17
81
0
26 Mar 2020
12
Next