Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.06560
Cited By
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
18 December 2017
Edoardo Conti
Vashisht Madhavan
F. Such
Joel Lehman
Kenneth O. Stanley
Jeff Clune
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents"
26 / 76 papers shown
Title
AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning
Qijing Huang
Ameer Haj-Ali
William S. Moses
J. Xiang
Ion Stoica
Krste Asanović
J. Wawrzynek
21
56
0
02 Mar 2020
Simultaneously Evolving Deep Reinforcement Learning Models using Multifactorial Optimization
Aritz D. Martinez
E. Osaba
Javier Del Ser
Francisco Herrera
22
10
0
25 Feb 2020
Effective Diversity in Population Based Reinforcement Learning
Jack Parker-Holder
Aldo Pacchiano
K. Choromanski
Stephen J. Roberts
22
158
0
03 Feb 2020
Population-Guided Parallel Policy Search for Reinforcement Learning
Whiyoung Jung
Giseung Park
Y. Sung
OffRL
24
38
0
09 Jan 2020
Covariance Matrix Adaptation for the Rapid Illumination of Behavior Space
Matthew C. Fontaine
Julian Togelius
Stefanos Nikolaidis
Amy K. Hoover
48
134
0
05 Dec 2019
Efficient Novelty-Driven Neural Architecture Search
Miao Zhang
Huiqi Li
Shirui Pan
Taoping Liu
Steven W. Su
28
1
0
22 Jul 2019
Learning to Score Behaviors for Guided Policy Optimization
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
A. Choromańska
K. Choromanski
Michael I. Jordan
27
38
0
11 Jun 2019
AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence
Jeff Clune
17
116
0
27 May 2019
Go-Explore: a New Approach for Hard-Exploration Problems
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
AI4TS
24
363
0
30 Jan 2019
Malthusian Reinforcement Learning
Joel Z Leibo
Julien Perolat
Edward Hughes
S. Wheelwright
Adam H. Marblestone
Edgar A. Duénez-Guzmán
P. Sunehag
Iain Dunning
T. Graepel
AI4CE
33
37
0
17 Dec 2018
PNS: Population-Guided Novelty Search for Reinforcement Learning in Hard Exploration Environments
Qihao Liu
Yujia Wang
Xiao-Fei Liu
25
8
0
26 Nov 2018
Evolving intrinsic motivations for altruistic behavior
Jane X. Wang
Edward Hughes
Chrisantha Fernando
Wojciech M. Czarnecki
Edgar A. Duénez-Guzmán
Joel Z Leibo
27
75
0
14 Nov 2018
EA-LSTM: Evolutionary Attention-based LSTM for Time Series Prediction
Youru Li
Zhenfeng Zhu
Deqiang Kong
Jinhyuk Lee
Yao Zhao
AI4TS
33
355
0
09 Nov 2018
Transfer Learning versus Multi-agent Learning regarding Distributed Decision-Making in Highway Traffic
Mark Schutera
Niklas Goby
Dirk Neumann
Markus Reischl
21
5
0
19 Oct 2018
Episodic Curiosity through Reachability
Nikolay Savinov
Anton Raichuk
Raphaël Marinier
Damien Vincent
Marc Pollefeys
Timothy Lillicrap
Sylvain Gelly
17
267
0
04 Oct 2018
CEM-RL: Combining evolutionary and gradient-based methods for policy search
Aloïs Pourchot
Olivier Sigaud
32
160
0
02 Oct 2018
Importance mixing: Improving sample reuse in evolutionary policy search methods
Aloïs Pourchot
Nicolas Perrin
Olivier Sigaud
15
14
0
17 Aug 2018
Curiosity Driven Exploration of Learned Disentangled Goal Spaces
A. Laversanne-Finot
Alexandre Péré
Pierre-Yves Oudeyer
DRL
27
87
0
04 Jul 2018
Learning Self-Imitating Diverse Policies
Tanmay Gangwani
Qiang Liu
Jian Peng
29
65
0
25 May 2018
Discovering the Elite Hypervolume by Leveraging Interspecies Correlation
Vassilis Vassiliades
Jean-Baptiste Mouret
24
80
0
11 Apr 2018
Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud
F. Stulp
16
72
0
13 Mar 2018
Back to Basics: Benchmarking Canonical Evolution Strategies for Playing Atari
P. Chrabaszcz
I. Loshchilov
Frank Hutter
32
99
0
24 Feb 2018
Structured Control Nets for Deep Reinforcement Learning
Mario Srouji
Jian Zhang
Ruslan Salakhutdinov
33
43
0
22 Feb 2018
State Representation Learning for Control: An Overview
Timothée Lesort
Natalia Díaz Rodríguez
Jean-François Goudou
David Filliat
OffRL
30
319
0
12 Feb 2018
ES Is More Than Just a Traditional Finite-Difference Approximator
Joel Lehman
Jay Chen
Jeff Clune
Kenneth O. Stanley
25
89
0
18 Dec 2017
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
686
0
18 Dec 2017
Previous
1
2