Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.06560
Cited By
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
18 December 2017
Edoardo Conti
Vashisht Madhavan
F. Such
Joel Lehman
Kenneth O. Stanley
Jeff Clune
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents"
50 / 73 papers shown
Title
Utilizing Novelty-based Evolution Strategies to Train Transformers in Reinforcement Learning
Matyáš Lorenc
OffRL
75
0
0
10 Feb 2025
Heterogeneous Multi-agent Zero-Shot Coordination by Coevolution
Ke Xue
Yutong Wang
Cong Guan
Lei Yuan
Haobo Fu
Qiang Fu
Chao Qian
Yang Yu
42
17
0
03 Jan 2025
Acceleration for Deep Reinforcement Learning using Parallel and Distributed Computing: A Survey
Zhihong Liu
Xin Xu
Peng Qiao
Dongsheng Li
OffRL
27
2
0
08 Nov 2024
Zeroth-Order Policy Gradient for Reinforcement Learning from Human Feedback without Reward Inference
Qining Zhang
Lei Ying
OffRL
37
2
0
25 Sep 2024
Mimicry and the Emergence of Cooperative Communication
Dylan R. Cope
Peter McBurney
35
0
0
26 May 2024
Generalized Population-Based Training for Hyperparameter Optimization in Reinforcement Learning
Hui Bai
Ran Cheng
55
4
0
12 Apr 2024
Quality Diversity through Human Feedback: Towards Open-Ended Diversity-Driven Optimization
Lijie Ding
Jenny Zhang
Jeff Clune
Lee Spector
Joel Lehman
EGVM
37
7
0
18 Oct 2023
Quality Diversity under Sparse Reward and Sparse Interaction: Application to Grasping in Robotics
J. Huber
François Hélénon
Miranda Coninx
F. B. Amar
Stéphane Doncieux
34
7
0
10 Aug 2023
Mirror Natural Evolution Strategies
Haishan Ye
27
2
0
01 Aug 2023
Foundational Models Defining a New Era in Vision: A Survey and Outlook
Muhammad Awais
Muzammal Naseer
Salman Khan
Rao Muhammad Anwer
Hisham Cholakkal
M. Shah
Ming Yang
Fahad Shahbaz Khan
VLM
38
119
0
25 Jul 2023
Robust Driving Policy Learning with Guided Meta Reinforcement Learning
Kanghoon Lee
Jiachen Li
David Isele
Jinkyoo Park
K. Fujimura
Mykel J. Kochenderfer
29
5
0
19 Jul 2023
Evolutionary Strategy Guided Reinforcement Learning via MultiBuffer Communication
Adam Callaghan
Karl Mason
Patrick Mannion
37
2
0
20 Jun 2023
Evolving Populations of Diverse RL Agents with MAP-Elites
Thomas Pierrot
Arthur Flajolet
33
8
0
09 Mar 2023
Reinforced Genetic Algorithm for Structure-based Drug Design
Tianfan Fu
Wenhao Gao
Connor W. Coley
Jimeng Sun
38
51
0
28 Nov 2022
Efficient Exploration using Model-Based Quality-Diversity with Gradients
Bryan Lim
Manon Flageat
Antoine Cully
23
4
0
22 Nov 2022
Learning General World Models in a Handful of Reward-Free Deployments
Yingchen Xu
Jack Parker-Holder
Aldo Pacchiano
Philip J. Ball
Oleh Rybkin
Stephen J. Roberts
Tim Rocktaschel
Edward Grefenstette
OffRL
62
9
0
23 Oct 2022
Efficient circuit implementation for coined quantum walks on binary trees and application to reinforcement learning
Thomas Mullor
David Vigouroux
Louis Bethune
18
0
0
13 Oct 2022
Neuroevolution is a Competitive Alternative to Reinforcement Learning for Skill Discovery
Félix Chalumeau
Raphael Boige
Bryan Lim
Valentin Macé
Maxime Allard
Arthur Flajolet
Antoine Cully
Thomas Pierrot
26
21
0
06 Oct 2022
Training Diverse High-Dimensional Controllers by Scaling Covariance Matrix Adaptation MAP-Annealing
Bryon Tjanaka
Matthew C. Fontaine
David H. Lee
Aniruddha Kalkar
Stefanos Nikolaidis
68
8
0
06 Oct 2022
An information-theoretic perspective on intrinsic motivation in reinforcement learning: a survey
A. Aubret
L. Matignon
S. Hassas
37
35
0
19 Sep 2022
Deep Surrogate Assisted Generation of Environments
Varun Bhatt
Bryon Tjanaka
Matthew C. Fontaine
Stefanos Nikolaidis
56
35
0
09 Jun 2022
Reinforcement Learning for Branch-and-Bound Optimisation using Retrospective Trajectories
Christopher W. F. Parsonson
Alexandre Laterre
Thomas D. Barrett
25
19
0
28 May 2022
Covariance Matrix Adaptation MAP-Annealing
Matthew C. Fontaine
Stefanos Nikolaidis
48
25
0
22 May 2022
Exploration in Deep Reinforcement Learning: A Survey
Pawel Ladosz
Lilian Weng
Minwoo Kim
H. Oh
OffRL
26
324
0
02 May 2022
TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning
Konstantin Sozykin
Andrei Chertkov
R. Schutski
Anh-Huy Phan
A. Cichocki
Ivan Oseledets
14
35
0
30 Apr 2022
Gradient-free Multi-domain Optimization for Autonomous Systems
Hongrui Zheng
Johannes Betz
Rahul Mangharam
16
7
0
28 Feb 2022
A Globally Convergent Evolutionary Strategy for Stochastic Constrained Optimization with Applications to Reinforcement Learning
Youssef Diouane
Aurelien Lucchi
Vihang Patil
29
3
0
21 Feb 2022
Evolving Neural Networks with Optimal Balance between Information Flow and Connections Cost
A. Khalili
A. Bouchachia
17
0
0
12 Feb 2022
Approximating Gradients for Differentiable Quality Diversity in Reinforcement Learning
Bryon Tjanaka
Matthew C. Fontaine
Julian Togelius
Stefanos Nikolaidis
38
50
0
08 Feb 2022
Agent Spaces
John C. Raisbeck
M. W. Allen
Hakho Lee
30
1
0
11 Nov 2021
Guiding Evolutionary Strategies by Differentiable Robot Simulators
Vladislav Kurenkov
Bulat Maksudov
31
2
0
01 Oct 2021
Deep Reinforcement Learning Versus Evolution Strategies: A Comparative Survey
Amjad Yousef Majid
Serge Saaybi
Tomas van Rietbergen
Vincent François-Lavet
R. V. Prasad
Chris Verhoeven
OffRL
62
55
0
28 Sep 2021
Evolutionary Self-Replication as a Mechanism for Producing Artificial Intelligence
Samuel Schmidgall
Joe Hays
41
1
0
16 Sep 2021
Illuminating Diverse Neural Cellular Automata for Level Generation
Sam Earle
J. Snider
Matthew C. Fontaine
Stefanos Nikolaidis
Julian Togelius
56
37
0
12 Sep 2021
Variational Quantum Reinforcement Learning via Evolutionary Optimization
Samuel Yen-Chi Chen
Chih-Min Huang
Chia-Wei Hsing
H. Goan
Y. Kao
40
82
0
01 Sep 2021
A Survey of Exploration Methods in Reinforcement Learning
Susan Amin
Maziar Gomrokchi
Harsh Satija
H. V. Hoof
Doina Precup
OffRL
32
80
0
01 Sep 2021
Differentiable Quality Diversity
Matthew C. Fontaine
Stefanos Nikolaidis
51
89
0
07 Jun 2021
Discovering Diverse Athletic Jumping Strategies
Zhiqi Yin
Zeshi Yang
M. van de Panne
KangKang Yin
42
46
0
02 May 2021
Sparse Reward Exploration via Novelty Search and Emitters
Giuseppe Paolo
Alexandre Coninx
Stéphane Doncieux
Alban Laflaquière
45
19
0
05 Feb 2021
Harnessing Distribution Ratio Estimators for Learning Agents with Quality and Diversity
Tanmay Gangwani
Jian Peng
Yuanshuo Zhou
26
10
0
05 Nov 2020
Multimodal Safety-Critical Scenarios Generation for Decision-Making Algorithms Evaluation
Wenhao Ding
Baiming Chen
Bo-wen Li
Kim Ji Eun
Ding Zhao
AAML
16
100
0
16 Sep 2020
Non-local Policy Optimization via Diversity-regularized Collaborative Exploration
Zhenghao Peng
Hao Sun
Bolei Zhou
18
18
0
14 Jun 2020
Gradient Monitored Reinforcement Learning
Mohammed Sharafath Abdul Hameed
Gavneet Singh Chadha
Andreas Schwung
S. Ding
33
10
0
25 May 2020
Should artificial agents ask for help in human-robot collaborative problem-solving?
Adrien Bennetot
V. Charisi
Natalia Díaz Rodríguez
21
8
0
25 May 2020
Novel Policy Seeking with Constrained Optimization
Hao Sun
Zhenghao Peng
Bo Dai
Jian Guo
Dahua Lin
Bolei Zhou
24
13
0
21 May 2020
First return, then explore
Adrien Ecoffet
Joost Huizinga
Joel Lehman
Kenneth O. Stanley
Jeff Clune
47
351
0
27 Apr 2020
Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods
Jiale Zhi
Rui Wang
Jeff Clune
Kenneth O. Stanley
OffRL
30
12
0
25 Mar 2020
Scaling MAP-Elites to Deep Neuroevolution
Cédric Colas
Joost Huizinga
Vashisht Madhavan
Jeff Clune
33
86
0
03 Mar 2020
AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning
Qijing Huang
Ameer Haj-Ali
William S. Moses
J. Xiang
Ion Stoica
Krste Asanović
J. Wawrzynek
21
56
0
02 Mar 2020
Simultaneously Evolving Deep Reinforcement Learning Models using Multifactorial Optimization
Aritz D. Martinez
E. Osaba
Javier Del Ser
Francisco Herrera
22
10
0
25 Feb 2020
1
2
Next