ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.05889
  4. Cited By
Ray: A Distributed Framework for Emerging AI Applications
v1v2 (latest)

Ray: A Distributed Framework for Emerging AI Applications

16 December 2017
Philipp Moritz
Robert Nishihara
Stephanie Wang
Alexey Tumanov
Richard Liaw
Eric Liang
Melih Elibol
Zongheng Yang
William Paul
Michael I. Jordan
Ion Stoica
    GNN
ArXiv (abs)PDFHTML

Papers citing "Ray: A Distributed Framework for Emerging AI Applications"

45 / 495 papers shown
Title
QuaRL: Quantization for Fast and Environmentally Sustainable
  Reinforcement Learning
QuaRL: Quantization for Fast and Environmentally Sustainable Reinforcement Learning
Srivatsan Krishnan
Maximilian Lam
Sharad Chitlangia
Zishen Wan
Gabriel Barth-Maron
Aleksandra Faust
Vijay Janapa Reddi
MQ
44
26
0
02 Oct 2019
SURREAL-System: Fully-Integrated Stack for Distributed Deep
  Reinforcement Learning
SURREAL-System: Fully-Integrated Stack for Distributed Deep Reinforcement Learning
Linxi Fan
Yuke Zhu
Jiren Zhu
Zihua Liu
Orien Zeng
Anchit Gupta
Joan Creus-Costa
Silvio Savarese
Li Fei-Fei
OffRLGNN
82
3
0
27 Sep 2019
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement
  Learning
NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning
Ameer Haj-Ali
Nesreen Ahmed
Theodore L. Willke
Sophia Shao
Krste Asanović
Ion Stoica
81
101
0
20 Sep 2019
Blackbox Attacks on Reinforcement Learning Agents Using Approximated
  Temporal Information
Blackbox Attacks on Reinforcement Learning Agents Using Approximated Temporal Information
Yiren Zhao
Ilia Shumailov
Han Cui
Xitong Gao
Robert D. Mullins
Ross J. Anderson
AAML
79
28
0
06 Sep 2019
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch
Adam Stooke
Pieter Abbeel
OffRL
77
98
0
03 Sep 2019
Scalable Reinforcement-Learning-Based Neural Architecture Search for
  Cancer Deep Learning Research
Scalable Reinforcement-Learning-Based Neural Architecture Search for Cancer Deep Learning Research
Prasanna Balaprakash
Romain Egele
Misha Salim
Stefan M. Wild
V. Vishwanath
Fangfang Xia
Thomas Brettin
Rick L. Stevens
68
54
0
01 Sep 2019
Serverless Supercomputing: High Performance Function as a Service for
  Science
Serverless Supercomputing: High Performance Function as a Service for Science
Ryan Chard
Tyler J. Skluzacek
Zhuozhao Li
Y. Babuji
A. Woodard
Ben Blaiszik
S. Tuecke
Ian Foster
Kyle Chard
LRM
54
34
0
14 Aug 2019
A Review of Cooperative Multi-Agent Deep Reinforcement Learning
A Review of Cooperative Multi-Agent Deep Reinforcement Learning
Afshin Oroojlooyjadid
Davood Hajinezhad
120
436
0
11 Aug 2019
Single Point Transductive Prediction
Single Point Transductive Prediction
Nilesh Tripuraneni
Lester W. Mackey
43
6
0
06 Aug 2019
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
681
5,944
0
25 Jul 2019
ASYNC: A Cloud Engine with Asynchrony and History for Distributed
  Machine Learning
ASYNC: A Cloud Engine with Asynchrony and History for Distributed Machine Learning
Saeed Soori
Bugra Can
Mert Gurbuzbalaban
M. Dehnavi
GNNOffRL
33
4
0
19 Jul 2019
Privacy Preserving QoE Modeling using Collaborative Learning
Privacy Preserving QoE Modeling using Collaborative Learning
Selim Ickin
K. Vandikas
M. Fiedler
28
22
0
21 Jun 2019
Attentional Policies for Cross-Context Multi-Agent Reinforcement
  Learning
Attentional Policies for Cross-Context Multi-Agent Reinforcement Learning
Matthew A. Wright
R. Horowitz
49
3
0
31 May 2019
Structured Monte Carlo Sampling for Nonisotropic Distributions via
  Determinantal Point Processes
Structured Monte Carlo Sampling for Nonisotropic Distributions via Determinantal Point Processes
K. Choromanski
Aldo Pacchiano
Jack Parker-Holder
Yunhao Tang
61
3
0
29 May 2019
Stochastic Inverse Reinforcement Learning
Stochastic Inverse Reinforcement Learning
Ce Ju
24
0
0
21 May 2019
Automatic Model Selection for Neural Networks
Automatic Model Selection for Neural Networks
David Laredo
Yulin Qin
O. Schütze
Jianqiao Sun
BDL
54
16
0
15 May 2019
Population Based Augmentation: Efficient Learning of Augmentation Policy
  Schedules
Population Based Augmentation: Efficient Learning of Augmentation Policy Schedules
Daniel Ho
Eric Liang
Ion Stoica
Pieter Abbeel
Xi Chen
83
405
0
14 May 2019
Parsl: Pervasive Parallel Programming in Python
Parsl: Pervasive Parallel Programming in Python
Y. Babuji
A. Woodard
Zhuozhao Li
Daniel S. Katz
Ben Clifford
...
Ryan Chard
Justin M. Wozniak
Ian Foster
Michael Wilde
Kyle Chard
MoE
70
253
0
06 May 2019
Fast AutoAugment
Fast AutoAugment
Sungbin Lim
Ildoo Kim
Taesup Kim
Chiheon Kim
Sungwoong Kim
118
601
0
01 May 2019
Policy Gradient Search: Online Planning and Expert Iteration without
  Search Trees
Policy Gradient Search: Online Planning and Expert Iteration without Search Trees
Thomas W. Anthony
Robert Nishihara
Philipp Moritz
Tim Salimans
John Schulman
81
30
0
07 Apr 2019
Deep Reinforcement Learning on a Budget: 3D Control and Reasoning
  Without a Supercomputer
Deep Reinforcement Learning on a Budget: 3D Control and Reasoning Without a Supercomputer
E. Beeching
Christian Wolf
J. Dibangoye
Olivier Simonin
OffRLLRM
76
25
0
03 Apr 2019
Scalable Deep Learning on Distributed Infrastructures: Challenges,
  Techniques and Tools
Scalable Deep Learning on Distributed Infrastructures: Challenges, Techniques and Tools
R. Mayer
Hans-Arno Jacobsen
GNN
81
193
0
27 Mar 2019
Guiding High-Performance SAT Solvers with Unsat-Core Predictions
Guiding High-Performance SAT Solvers with Unsat-Core Predictions
Daniel Selsam
Nikolaj S. Bjørner
NAI
92
122
0
12 Mar 2019
Artificial Intelligence for Prosthetics - challenge solutions
Artificial Intelligence for Prosthetics - challenge solutions
L. Kidzinski
Carmichael F. Ong
Sharada Mohanty
Jennifer Hicks
Sean F. Carroll
...
E. Tumer
J. Watson
M. Salathé
Sergey Levine
Scott L. Delp
55
42
0
07 Feb 2019
TF-Replicator: Distributed Machine Learning for Researchers
TF-Replicator: Distributed Machine Learning for Researchers
P. Buchlovsky
David Budden
Dominik Grewe
Chris Jones
John Aslanides
...
Aidan Clark
Sergio Gomez Colmenarejo
Aedan Pope
Fabio Viola
Dan Belov
GNNOffRLAI4CE
76
20
0
01 Feb 2019
CROSSBOW: Scaling Deep Learning with Small Batch Sizes on Multi-GPU
  Servers
CROSSBOW: Scaling Deep Learning with Small Batch Sizes on Multi-GPU Servers
A. Koliousis
Pijika Watcharapichat
Matthias Weidlich
Kai Zou
Paolo Costa
Peter R. Pietzuch
60
70
0
08 Jan 2019
Partitioned Variational Inference: A unified framework encompassing
  federated and continual learning
Partitioned Variational Inference: A unified framework encompassing federated and continual learning
T. Bui
Cuong V Nguyen
S. Swaroop
Richard Turner
FedML
91
56
0
27 Nov 2018
Learning data augmentation policies using augmented random search
Learning data augmentation policies using augmented random search
Mingyang Geng
Kele Xu
Bo Ding
Huaimin Wang
Lei Zhang
53
9
0
12 Nov 2018
Democratizing Production-Scale Distributed Deep Learning
Democratizing Production-Scale Distributed Deep Learning
Minghuang Ma
Hadi Pouransari
Daniel Chao
Saurabh N. Adya
S. Serrano
Yi Qin
Dan Gimnicher
Dominic Walsh
MoE
96
6
0
31 Oct 2018
numpywren: serverless linear algebra
numpywren: serverless linear algebra
Vaishaal Shankar
K. Krauth
Qifan Pu
Eric Jonas
Shivaram Venkataraman
Ion Stoica
Benjamin Recht
Jonathan Ragan-Kelley
79
111
0
23 Oct 2018
RLgraph: Modular Computation Graphs for Deep Reinforcement Learning
RLgraph: Modular Computation Graphs for Deep Reinforcement Learning
Michael Schaarschmidt
Sven Mika
Kai Fricke
Eiko Yoneki
OffRL
51
5
0
21 Oct 2018
Runtime Concurrency Control and Operation Scheduling for High
  Performance Neural Network Training
Runtime Concurrency Control and Operation Scheduling for High Performance Neural Network Training
Jiawen Liu
Dong Li
Gokcen Kestor
Jeffrey S. Vetter
20
10
0
21 Oct 2018
POLO: a POLicy-based Optimization library
POLO: a POLicy-based Optimization library
Arda Aytekin
Martin Biel
M. Johansson
43
3
0
08 Oct 2018
Large batch size training of neural networks with adversarial training
  and second-order information
Large batch size training of neural networks with adversarial training and second-order information
Z. Yao
A. Gholami
Daiyaan Arfeen
Richard Liaw
Joseph E. Gonzalez
Kurt Keutzer
Michael W. Mahoney
ODL
96
42
0
02 Oct 2018
Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems
Intelligence Beyond the Edge: Inference on Intermittent Embedded Systems
Graham Gobieski
Nathan Beckmann
Brandon Lucia
67
207
0
28 Sep 2018
Robot_gym: accelerated robot training through simulation in the cloud
  with ROS and Gazebo
Robot_gym: accelerated robot training through simulation in the cloud with ROS and Gazebo
Víctor Mayoral-Vilches
A. Cordero
A. Calvo
I. Ugarte
R. Kojcev
35
1
0
30 Aug 2018
Tune: A Research Platform for Distributed Model Selection and Training
Tune: A Research Platform for Distributed Model Selection and Training
Richard Liaw
Eric Liang
Robert Nishihara
Philipp Moritz
Joseph E. Gonzalez
Ion Stoica
225
905
0
13 Jul 2018
Ranked Reward: Enabling Self-Play Reinforcement Learning for
  Combinatorial Optimization
Ranked Reward: Enabling Self-Play Reinforcement Learning for Combinatorial Optimization
Alexandre Laterre
Yunguan Fu
Mohamed Khalil Jabri
A. Cohen
David Kas
Karl Hajjar
T. Dahl
Amine Kerkeni
Karim Beguir
128
80
0
04 Jul 2018
Simple random search provides a competitive approach to reinforcement
  learning
Simple random search provides a competitive approach to reinforcement learning
Horia Mania
Aurelia Guy
Benjamin Recht
72
317
0
19 Mar 2018
Deep Learning in Mobile and Wireless Networking: A Survey
Deep Learning in Mobile and Wireless Networking: A Survey
Chaoyun Zhang
P. Patras
Hamed Haddadi
131
1,320
0
12 Mar 2018
Asynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth
  Optimization
Asynchronous Stochastic Proximal Methods for Nonconvex Nonsmooth Optimization
Rui Zhu
Di Niu
Zongpeng Li
53
4
0
24 Feb 2018
The Need for Speed of AI Applications: Performance Comparison of Native
  vs. Browser-based Algorithm Implementations
The Need for Speed of AI Applications: Performance Comparison of Native vs. Browser-based Algorithm Implementations
Bernd Malle
Nicola Giuliani
Peter Kieseberg
Andreas Holzinger
17
8
0
11 Feb 2018
ZOOpt: Toolbox for Derivative-Free Optimization
ZOOpt: Toolbox for Derivative-Free Optimization
Yu-Ren Liu
Yi-Qi Hu
Hong Qian
Chao Qian
Yang Yu
GP
59
28
0
31 Dec 2017
RLlib: Abstractions for Distributed Reinforcement Learning
RLlib: Abstractions for Distributed Reinforcement Learning
Eric Liang
Richard Liaw
Philipp Moritz
Robert Nishihara
Roy Fox
Ken Goldberg
Joseph E. Gonzalez
Michael I. Jordan
Ion Stoica
OffRLAI4CE
96
175
0
26 Dec 2017
Optimal Sub-sampling with Influence Functions
Optimal Sub-sampling with Influence Functions
Daniel Ting
E. Brochu
TDI
74
32
0
06 Sep 2017
Previous
123...1089