ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09028
21
5

RLgraph: Modular Computation Graphs for Deep Reinforcement Learning

21 October 2018
Michael Schaarschmidt
Sven Mika
Kai Fricke
Eiko Yoneki
    OffRL
ArXivPDFHTML
Abstract

Reinforcement learning (RL) tasks are challenging to implement, execute and test due to algorithmic instability, hyper-parameter sensitivity, and heterogeneous distributed communication patterns. We argue for the separation of logical component composition, backend graph definition, and distributed execution. To this end, we introduce RLgraph, a library for designing and executing reinforcement learning tasks in both static graph and define-by-run paradigms. The resulting implementations are robust, incrementally testable, and yield high performance across different deep learning frameworks and distributed backends.

View on arXiv
Comments on this paper