ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.04768
19
9

Learning data augmentation policies using augmented random search

12 November 2018
Mingyang Geng
Kele Xu
Bo Ding
Huaimin Wang
Lei Zhang
ArXivPDFHTML
Abstract

Previous attempts for data augmentation are designed manually, and the augmentation policies are dataset-specific. Recently, an automatic data augmentation approach, named AutoAugment, is proposed using reinforcement learning. AutoAugment searches for the augmentation polices in the discrete search space, which may lead to a sub-optimal solution. In this paper, we employ the Augmented Random Search method (ARS) to improve the performance of AutoAugment. Our key contribution is to change the discrete search space to continuous space, which will improve the searching performance and maintain the diversities between sub-policies. With the proposed method, state-of-the-art accuracies are achieved on CIFAR-10, CIFAR-100, and ImageNet (without additional data). Our code is available at https://github.com/gmy2013/ARS-Aug.

View on arXiv
Comments on this paper