Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1712.02390
Cited By
Noisy Natural Gradient as Variational Inference
6 December 2017
Guodong Zhang
Shengyang Sun
D. Duvenaud
Roger C. Grosse
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Noisy Natural Gradient as Variational Inference"
43 / 43 papers shown
Title
Spectral-factorized Positive-definite Curvature Learning for NN Training
Wu Lin
Felix Dangel
Runa Eschenhagen
Juhan Bae
Richard E. Turner
Roger B. Grosse
47
0
0
10 Feb 2025
Manifold Sampling for Differentiable Uncertainty in Radiance Fields
Linjie Lyu
Ayush Tewari
Marc Habermann
Shunsuke Saito
Michael Zollhöfer
Thomas Leimkühler
Christian Theobalt
UQCV
38
1
0
19 Sep 2024
Linearization Turns Neural Operators into Function-Valued Gaussian Processes
Emilia Magnani
Marvin Pfortner
Tobias Weber
Philipp Hennig
UQCV
63
1
0
07 Jun 2024
Scalable Bayesian Learning with posteriors
Samuel Duffield
Kaelan Donatella
Johnathan Chiu
Phoebe Klett
Daniel Simpson
BDL
UQCV
62
1
0
31 May 2024
BayesDiff: Estimating Pixel-wise Uncertainty in Diffusion via Bayesian Inference
Siqi Kou
Lei Gan
Dequan Wang
Chongxuan Li
Zhijie Deng
BDL
DiffM
21
7
0
17 Oct 2023
Function-Space Regularization for Deep Bayesian Classification
J. Lin
Joe Watson
Pascal Klink
Jan Peters
UQCV
BDL
35
1
0
12 Jul 2023
Prediction-Oriented Bayesian Active Learning
Freddie Bickford-Smith
Andreas Kirsch
Sebastian Farquhar
Y. Gal
Adam Foster
Tom Rainforth
29
28
0
17 Apr 2023
Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space
Michael Diao
Krishnakumar Balasubramanian
Sinho Chewi
Adil Salim
BDL
15
20
0
10 Apr 2023
Making Substitute Models More Bayesian Can Enhance Transferability of Adversarial Examples
Qizhang Li
Yiwen Guo
W. Zuo
Hao Chen
AAML
27
35
0
10 Feb 2023
Hierarchically Structured Task-Agnostic Continual Learning
Heinke Hihn
Daniel A. Braun
BDL
CLL
19
8
0
14 Nov 2022
Manifold Gaussian Variational Bayes on the Precision Matrix
M. Magris
M. Shabani
Alexandros Iosifidis
37
2
0
26 Oct 2022
On the optimization and pruning for Bayesian deep learning
X. Ke
Yanan Fan
BDL
UQCV
24
1
0
24 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
47
19
0
23 Oct 2022
Approximate Bayesian Neural Operators: Uncertainty Quantification for Parametric PDEs
Emilia Magnani
Nicholas Kramer
Runa Eschenhagen
Lorenzo Rosasco
Philipp Hennig
UQCV
BDL
13
9
0
02 Aug 2022
Laplacian Autoencoders for Learning Stochastic Representations
M. Miani
Frederik Warburg
Pablo Moreno-Muñoz
Nicke Skafte Detlefsen
Søren Hauberg
UQCV
BDL
SSL
28
10
0
30 Jun 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
26
44
0
22 Feb 2022
Gradient Descent on Neurons and its Link to Approximate Second-Order Optimization
Frederik Benzing
ODL
35
23
0
28 Jan 2022
A Survey on Epistemic (Model) Uncertainty in Supervised Learning: Recent Advances and Applications
Xinlei Zhou
Han Liu
Farhad Pourpanah
T. Zeng
Xizhao Wang
UQCV
UD
19
58
0
03 Nov 2021
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
55
73
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
30
1,109
0
07 Jul 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
15
15
0
18 Jun 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
21
37
0
10 Jun 2021
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCV
BDL
29
124
0
14 May 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
D. Duvenaud
BDL
UQCV
19
46
0
12 Feb 2021
The Hidden Uncertainty in a Neural Networks Activations
Janis Postels
Hermann Blum
Yannick Strümpler
César Cadena
Roland Siegwart
Luc Van Gool
Federico Tombari
UQCV
24
22
0
05 Dec 2020
Generalized Variational Continual Learning
Noel Loo
S. Swaroop
Richard E. Turner
BDL
CLL
30
58
0
24 Nov 2020
A Trace-restricted Kronecker-Factored Approximation to Natural Gradient
Kai-Xin Gao
Xiaolei Liu
Zheng-Hai Huang
Min Wang
Zidong Wang
Dachuan Xu
F. Yu
21
11
0
21 Nov 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
16
24
0
26 Oct 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
25
46
0
20 Jun 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
13
60
0
17 May 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
25
277
0
24 Feb 2020
Handling the Positive-Definite Constraint in the Bayesian Learning Rule
Wu Lin
Mark W. Schmidt
Mohammad Emtiyaz Khan
BDL
29
35
0
24 Feb 2020
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
22
58
0
19 Feb 2020
Sampling-free Epistemic Uncertainty Estimation Using Approximated Variance Propagation
Janis Postels
Francesco Ferroni
Huseyin Coskun
Nassir Navab
Federico Tombari
UQCV
UD
PER
BDL
27
139
0
01 Aug 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
16
77
0
19 Jun 2019
Stochastic Neural Network with Kronecker Flow
Chin-Wei Huang
Ahmed Touati
Pascal Vincent
Gintare Karolina Dziugaite
Alexandre Lacoste
Aaron Courville
BDL
24
8
0
10 Jun 2019
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
41
240
0
06 Jun 2019
Limitations of the Empirical Fisher Approximation for Natural Gradient Descent
Frederik Kunstner
Lukas Balles
Philipp Hennig
17
207
0
29 May 2019
Walsh-Hadamard Variational Inference for Bayesian Deep Learning
Simone Rossi
Sébastien Marmin
Maurizio Filippone
BDL
24
14
0
27 May 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
15
22
0
21 Feb 2019
Good Initializations of Variational Bayes for Deep Models
Simone Rossi
Pietro Michiardi
Maurizio Filippone
BDL
17
21
0
18 Oct 2018
Variational Optimization
J. Staines
David Barber
DRL
62
53
0
18 Dec 2012
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1