ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1712.01272
  4. Cited By
Layer-wise Learning of Stochastic Neural Networks with Information
  Bottleneck

Layer-wise Learning of Stochastic Neural Networks with Information Bottleneck

4 December 2017
Thanh T. Nguyen
Jaesik Choi
ArXivPDFHTML

Papers citing "Layer-wise Learning of Stochastic Neural Networks with Information Bottleneck"

36 / 36 papers shown
Title
Bayesian Optimization with Unknown Search Space
Bayesian Optimization with Unknown Search Space
Huong Ha
Santu Rana
Sunil R. Gupta
Thanh Nguyen
Hung The Tran
Svetha Venkatesh
42
22
0
29 Oct 2019
On Mutual Information Maximization for Representation Learning
On Mutual Information Maximization for Representation Learning
Michael Tschannen
Josip Djolonga
Paul Kishan Rubenstein
Sylvain Gelly
Mario Lucic
SSL
174
495
0
31 Jul 2019
Data-Efficient Mutual Information Neural Estimator
Data-Efficient Mutual Information Neural Estimator
Xiaoyu Lin
Indranil Sur
Samuel A. Nastase
Ajay Divakaran
Uri Hasson
Mohamed R. Amer
DRL
69
21
0
08 May 2019
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
FAVAE: Sequence Disentanglement using Information Bottleneck Principle
Masanori Yamada
Heecheol Kim
Kosuke Miyoshi
Hiroshi Yamakawa
CML
DRL
CoGe
24
4
0
22 Feb 2019
InfoBot: Transfer and Exploration via the Information Bottleneck
InfoBot: Transfer and Exploration via the Information Bottleneck
Anirudh Goyal
Riashat Islam
Daniel Strouse
Zafarali Ahmed
M. Botvinick
Hugo Larochelle
Yoshua Bengio
Sergey Levine
OffRL
78
166
0
30 Jan 2019
Compressing Neural Networks using the Variational Information Bottleneck
Compressing Neural Networks using the Variational Information Bottleneck
Bin Dai
Chen Zhu
David Wipf
MLT
51
181
0
28 Feb 2018
Learning Representations for Neural Network-Based Classification Using
  the Information Bottleneck Principle
Learning Representations for Neural Network-Based Classification Using the Information Bottleneck Principle
Rana Ali Amjad
Bernhard C. Geiger
71
196
0
27 Feb 2018
Stronger generalization bounds for deep nets via a compression approach
Stronger generalization bounds for deep nets via a compression approach
Sanjeev Arora
Rong Ge
Behnam Neyshabur
Yi Zhang
MLT
AI4CE
86
642
0
14 Feb 2018
MINE: Mutual Information Neural Estimation
MINE: Mutual Information Neural Estimation
Mohamed Ishmael Belghazi
A. Baratin
Sai Rajeswar
Sherjil Ozair
Yoshua Bengio
Aaron Courville
R. Devon Hjelm
DRL
191
1,279
0
12 Jan 2018
The information bottleneck and geometric clustering
The information bottleneck and geometric clustering
D. Strouse
D. Schwab
37
35
0
27 Dec 2017
A Survey of Model Compression and Acceleration for Deep Neural Networks
A Survey of Model Compression and Acceleration for Deep Neural Networks
Yu Cheng
Duo Wang
Pan Zhou
Zhang Tao
72
1,095
0
23 Oct 2017
Emergence of Invariance and Disentanglement in Deep Representations
Emergence of Invariance and Disentanglement in Deep Representations
Alessandro Achille
Stefano Soatto
OOD
DRL
88
476
0
05 Jun 2017
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Stochastic Neural Networks for Hierarchical Reinforcement Learning
Carlos Florensa
Yan Duan
Pieter Abbeel
BDL
90
361
0
10 Apr 2017
Opening the Black Box of Deep Neural Networks via Information
Opening the Black Box of Deep Neural Networks via Information
Ravid Shwartz-Ziv
Naftali Tishby
AI4CE
100
1,410
0
02 Mar 2017
Deep Variational Information Bottleneck
Deep Variational Information Bottleneck
Alexander A. Alemi
Ian S. Fischer
Joshua V. Dillon
Kevin Patrick Murphy
121
1,721
0
01 Dec 2016
Towards Evaluating the Robustness of Neural Networks
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
266
8,555
0
16 Aug 2016
Relevant sparse codes with variational information bottleneck
Relevant sparse codes with variational information bottleneck
M. Chalk
O. Marre
G. Tkačik
99
87
0
24 May 2016
Theano: A Python framework for fast computation of mathematical
  expressions
Theano: A Python framework for fast computation of mathematical expressions
The Theano Development Team
Rami Al-Rfou
Guillaume Alain
Amjad Almahairi
Christof Angermüller
...
Kelvin Xu
Lijun Xue
Li Yao
Saizheng Zhang
Ying Zhang
198
2,341
0
09 May 2016
The deterministic information bottleneck
The deterministic information bottleneck
D. Strouse
D. Schwab
55
135
0
01 Apr 2016
Deep Residual Learning for Image Recognition
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Predicting distributions with Linearizing Belief Networks
Predicting distributions with Linearizing Belief Networks
Yann N. Dauphin
David Grangier
59
18
0
17 Nov 2015
StochasticNet: Forming Deep Neural Networks via Stochastic Connectivity
StochasticNet: Forming Deep Neural Networks via Stochastic Connectivity
M. Shafiee
P. Siva
A. Wong
50
29
0
22 Aug 2015
Deep Learning and the Information Bottleneck Principle
Deep Learning and the Information Bottleneck Principle
Naftali Tishby
Noga Zaslavsky
DRL
207
1,584
0
09 Mar 2015
Batch Normalization: Accelerating Deep Network Training by Reducing
  Internal Covariate Shift
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,305
0
11 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
169
3,271
0
05 Dec 2014
Going Deeper with Convolutions
Going Deeper with Convolutions
Christian Szegedy
Wei Liu
Yangqing Jia
P. Sermanet
Scott E. Reed
Dragomir Anguelov
D. Erhan
Vincent Vanhoucke
Andrew Rabinovich
465
43,658
0
17 Sep 2014
Neural Machine Translation by Jointly Learning to Align and Translate
Neural Machine Translation by Jointly Learning to Align and Translate
Dzmitry Bahdanau
Kyunghyun Cho
Yoshua Bengio
AIMat
558
27,311
0
01 Sep 2014
Techniques for Learning Binary Stochastic Feedforward Neural Networks
Techniques for Learning Binary Stochastic Feedforward Neural Networks
T. Raiko
Mathias Berglund
Guillaume Alain
Laurent Dinh
BDL
103
126
0
11 Jun 2014
Learning Phrase Representations using RNN Encoder-Decoder for
  Statistical Machine Translation
Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
Kyunghyun Cho
B. V. Merrienboer
Çağlar Gülçehre
Dzmitry Bahdanau
Fethi Bougares
Holger Schwenk
Yoshua Bengio
AIMat
1.0K
23,354
0
03 Jun 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
452
16,929
0
20 Dec 2013
Estimating or Propagating Gradients Through Stochastic Neurons for
  Conditional Computation
Estimating or Propagating Gradients Through Stochastic Neurons for Conditional Computation
Yoshua Bengio
Nicholas Léonard
Aaron Courville
381
3,135
0
15 Aug 2013
Multivariate Information Bottleneck
Multivariate Information Bottleneck
N. Friedman
Ori Mosenzon
Noam Slonim
Naftali Tishby
77
221
0
10 Jan 2013
ADADELTA: An Adaptive Learning Rate Method
ADADELTA: An Adaptive Learning Rate Method
Matthew D. Zeiler
ODL
155
6,625
0
22 Dec 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
261
12,439
0
24 Jun 2012
1