Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.09404
Cited By
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
26 November 2017
A. Ross
Finale Doshi-Velez
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients"
50 / 109 papers shown
Title
Exploring Transferable and Robust Adversarial Perturbation Generation from the Perspective of Network Hierarchy
Ruikui Wang
Yuanfang Guo
Ruijie Yang
Yunhong Wang
AAML
17
3
0
16 Aug 2021
Improving the trustworthiness of image classification models by utilizing bounding-box annotations
K. Dharma
Chicheng Zhang
29
5
0
15 Aug 2021
Synthetic Benchmarks for Scientific Research in Explainable Machine Learning
Yang Liu
Sujay Khandagale
Colin White
W. Neiswanger
37
65
0
23 Jun 2021
Towards Robust Classification Model by Counterfactual and Invariant Data Generation
C. Chang
George Adam
Anna Goldenberg
OOD
CML
27
31
0
02 Jun 2021
Knowledge Distillation as Semiparametric Inference
Tri Dao
G. Kamath
Vasilis Syrgkanis
Lester W. Mackey
34
31
0
20 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
32
65
0
09 Apr 2021
White Box Methods for Explanations of Convolutional Neural Networks in Image Classification Tasks
Meghna P. Ayyar
J. Benois-Pineau
A. Zemmari
FAtt
9
17
0
06 Apr 2021
Mitigating Gradient-based Adversarial Attacks via Denoising and Compression
Rehana Mahfuz
R. Sahay
Aly El Gamal
AAML
6
3
0
03 Apr 2021
SoK: A Modularized Approach to Study the Security of Automatic Speech Recognition Systems
Yuxuan Chen
Jiangshan Zhang
Xuejing Yuan
Shengzhi Zhang
Kai Chen
Xiaofeng Wang
Shanqing Guo
AAML
37
15
0
19 Mar 2021
Improving Global Adversarial Robustness Generalization With Adversarially Trained GAN
Desheng Wang
Wei-dong Jin
Yunpu Wu
Aamir Khan
GAN
30
8
0
08 Mar 2021
Towards Evaluating the Robustness of Deep Diagnostic Models by Adversarial Attack
Mengting Xu
Tao Zhang
Zhongnian Li
Mingxia Liu
Daoqiang Zhang
AAML
OOD
MedIm
25
41
0
05 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
34
132
0
14 Feb 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
30
22
0
14 Feb 2021
Understanding and Increasing Efficiency of Frank-Wolfe Adversarial Training
Theodoros Tsiligkaridis
Jay Roberts
AAML
17
11
0
22 Dec 2020
On the human-recognizability phenomenon of adversarially trained deep image classifiers
Jonathan W. Helland
Nathan M. VanHoudnos
AAML
22
4
0
18 Dec 2020
On 1/n neural representation and robustness
Josue Nassar
Piotr A. Sokól
SueYeon Chung
K. Harris
Il Memming Park
AAML
OOD
24
23
0
08 Dec 2020
The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms
Rui Zhao
AAML
21
1
0
02 Nov 2020
The State of Industrial Robotics: Emerging Technologies, Challenges, and Key Research Directions
Lindsay M. Sanneman
Christopher K. Fourie
J. Shah
16
64
0
27 Oct 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
29
48
0
19 Oct 2020
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
13
63
0
01 Oct 2020
Input Hessian Regularization of Neural Networks
Waleed Mustafa
Robert A. Vandermeulen
Marius Kloft
AAML
17
12
0
14 Sep 2020
Play MNIST For Me! User Studies on the Effects of Post-Hoc, Example-Based Explanations & Error Rates on Debugging a Deep Learning, Black-Box Classifier
Courtney Ford
Eoin M. Kenny
Mark T. Keane
23
6
0
10 Sep 2020
Backpropagated Gradient Representations for Anomaly Detection
Gukyeong Kwon
Mohit Prabhushankar
Dogancan Temel
Ghassan AlRegib
12
71
0
18 Jul 2020
Proper Network Interpretability Helps Adversarial Robustness in Classification
Akhilan Boopathy
Sijia Liu
Gaoyuan Zhang
Cynthia Liu
Pin-Yu Chen
Shiyu Chang
Luca Daniel
AAML
FAtt
19
66
0
26 Jun 2020
Knowledge Distillation: A Survey
Jianping Gou
B. Yu
Stephen J. Maybank
Dacheng Tao
VLM
19
2,843
0
09 Jun 2020
Improve robustness of DNN for ECG signal classification:a noise-to-signal ratio perspective
Linhai Ma
Liang Liang
AAML
8
4
0
18 May 2020
Adversarial Latent Autoencoders
Stanislav Pidhorskyi
Donald Adjeroh
Gianfranco Doretto
GAN
DRL
40
259
0
09 Apr 2020
Adversarial Vertex Mixup: Toward Better Adversarially Robust Generalization
Saehyung Lee
Hyungyu Lee
Sungroh Yoon
AAML
161
113
0
05 Mar 2020
Uncertainty Estimation Using a Single Deep Deterministic Neural Network
Joost R. van Amersfoort
Lewis Smith
Yee Whye Teh
Y. Gal
UQCV
BDL
14
55
0
04 Mar 2020
On the Effectiveness of Mitigating Data Poisoning Attacks with Gradient Shaping
Sanghyun Hong
Varun Chandrasekaran
Yigitcan Kaya
Tudor Dumitras
Nicolas Papernot
AAML
20
136
0
26 Feb 2020
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence
S. Raschka
Joshua Patterson
Corey J. Nolet
AI4CE
24
483
0
12 Feb 2020
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
28
36
0
26 Dec 2019
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
26
68
0
06 Nov 2019
Adversarial Learning with Margin-based Triplet Embedding Regularization
Yaoyao Zhong
Weihong Deng
AAML
17
50
0
20 Sep 2019
Complexity-Scalable Neural Network Based MIMO Detection With Learnable Weight Scaling
A. Mohammad
C. Masouros
Y. Andreopoulos
18
28
0
12 Sep 2019
Improving performance of deep learning models with axiomatic attribution priors and expected gradients
G. Erion
Joseph D. Janizek
Pascal Sturmfels
Scott M. Lundberg
Su-In Lee
OOD
BDL
FAtt
18
80
0
25 Jun 2019
Controlling Neural Level Sets
Matan Atzmon
Niv Haim
Lior Yariv
Ofer Israelov
Haggai Maron
Y. Lipman
AI4CE
22
118
0
28 May 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Enhancing Adversarial Defense by k-Winners-Take-All
Chang Xiao
Peilin Zhong
Changxi Zheng
AAML
13
97
0
25 May 2019
Minimal Achievable Sufficient Statistic Learning
Milan Cvitkovic
Günther Koliander
17
12
0
19 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
33
1,227
0
29 Apr 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
17
151
0
01 Apr 2019
Defense-VAE: A Fast and Accurate Defense against Adversarial Attacks
Xiang Li
Shihao Ji
AAML
19
26
0
17 Dec 2018
A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras
S. Laine
Timo Aila
282
10,354
0
12 Dec 2018
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
16
270
0
06 Dec 2018
Robustness via curvature regularization, and vice versa
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
J. Uesato
P. Frossard
AAML
21
318
0
23 Nov 2018
Stability-certified reinforcement learning: A control-theoretic perspective
Ming Jin
Javad Lavaei
28
85
0
26 Oct 2018
Efficient Two-Step Adversarial Defense for Deep Neural Networks
Ting-Jui Chang
Yukun He
Peng Li
AAML
25
11
0
08 Oct 2018
Interpreting Adversarial Robustness: A View from Decision Surface in Input Space
Fuxun Yu
Chenchen Liu
Yanzhi Wang
Liang Zhao
Xiang Chen
AAML
OOD
31
27
0
29 Sep 2018
Previous
1
2
3
Next