Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.09404
Cited By
Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients
26 November 2017
A. Ross
Finale Doshi-Velez
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients"
29 / 29 papers shown
Title
MIRACLE3D: Memory-efficient Integrated Robust Approach for Continual Learning on Point Clouds via Shape Model Construction
Hossein Resani
B. Nasihatkon
3DV
430
0
0
08 Oct 2024
On the Robustness of Kolmogorov-Arnold Networks: An Adversarial Perspective
Tal Alter
Raz Lapid
Moshe Sipper
AAML
100
6
0
25 Aug 2024
Robust Explainable Recommendation
Sairamvinay Vijayaraghavan
Prasant Mohapatra
AAML
67
0
0
03 May 2024
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
117
8
0
15 Mar 2024
Specification Overfitting in Artificial Intelligence
Benjamin Roth
Pedro Henrique Luz de Araujo
Yuxi Xia
Saskia Kaltenbrunner
Christoph Korab
196
1
0
13 Mar 2024
Set-Based Training for Neural Network Verification
Lukas Koller
Tobias Ladner
Matthias Althoff
AAML
90
2
0
26 Jan 2024
On Continuity of Robust and Accurate Classifiers
Ramin Barati
Reza Safabakhsh
Mohammad Rahmati
AAML
76
1
0
29 Sep 2023
SmoothGrad: removing noise by adding noise
D. Smilkov
Nikhil Thorat
Been Kim
F. Viégas
Martin Wattenberg
FAtt
ODL
207
2,235
0
12 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,729
0
19 May 2017
The Space of Transferable Adversarial Examples
Florian Tramèr
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
SILM
92
558
0
11 Apr 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
89
1,271
0
04 Apr 2017
Improved Training of Wasserstein GANs
Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
GAN
227
9,560
0
31 Mar 2017
Biologically inspired protection of deep networks from adversarial attacks
Aran Nayebi
Surya Ganguli
AAML
71
115
0
27 Mar 2017
Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations
A. Ross
M. C. Hughes
Finale Doshi-Velez
FAtt
133
591
0
10 Mar 2017
Gradients of Counterfactuals
Mukund Sundararajan
Ankur Taly
Qiqi Yan
FAtt
73
104
0
08 Nov 2016
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
472
3,148
0
04 Nov 2016
Defensive Distillation is Not Robust to Adversarial Examples
Nicholas Carlini
D. Wagner
67
339
0
14 Jul 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
547
5,910
0
08 Jul 2016
Auditing Black-box Models for Indirect Influence
Philip Adler
Casey Falk
Sorelle A. Friedler
Gabriel Rybeck
C. Scheidegger
Brandon Smith
Suresh Venkatasubramanian
TDI
MLAU
166
290
0
23 Feb 2016
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.2K
17,033
0
16 Feb 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
75
3,682
0
08 Feb 2016
The Limitations of Deep Learning in Adversarial Settings
Nicolas Papernot
Patrick McDaniel
S. Jha
Matt Fredrikson
Z. Berkay Celik
A. Swami
AAML
115
3,967
0
24 Nov 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
113
3,076
0
14 Nov 2015
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
2.1K
150,364
0
22 Dec 2014
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,121
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
284
14,963
1
21 Dec 2013
Do Deep Nets Really Need to be Deep?
Lei Jimmy Ba
R. Caruana
173
2,119
0
21 Dec 2013
Convolutional Neural Networks Applied to House Numbers Digit Classification
P. Sermanet
Soumith Chintala
Yann LeCun
99
543
0
18 Apr 2012
How to Explain Individual Classification Decisions
D. Baehrens
T. Schroeter
Stefan Harmeling
M. Kawanabe
K. Hansen
K. Müller
FAtt
140
1,104
0
06 Dec 2009
1