Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.05144
Cited By
Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness
14 November 2017
Michael Kearns
Seth Neel
Aaron Roth
Zhiwei Steven Wu
FaML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness"
50 / 443 papers shown
Title
Abstracting Fairness: Oracles, Metrics, and Interpretability
Cynthia Dwork
Christina Ilvento
G. Rothblum
Pragya Sur
FaML
30
5
0
04 Apr 2020
FairALM: Augmented Lagrangian Method for Training Fair Models with Little Regret
Vishnu Suresh Lokhande
A. K. Akash
Sathya Ravi
Vikas Singh
FaML
20
31
0
03 Apr 2020
A survey of bias in Machine Learning through the prism of Statistical Parity for the Adult Data Set
Philippe C. Besse
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
Laurent Risser
FaML
22
63
0
31 Mar 2020
Balancing Competing Objectives with Noisy Data: Score-Based Classifiers for Welfare-Aware Machine Learning
Esther Rolf
Max Simchowitz
Sarah Dean
Lydia T. Liu
Daniel Björkegren
Moritz Hardt
J. Blumenstock
8
22
0
15 Mar 2020
Learning Certified Individually Fair Representations
Anian Ruoss
Mislav Balunović
Marc Fischer
Martin Vechev
FaML
15
92
0
24 Feb 2020
Fair Prediction with Endogenous Behavior
Christopher Jung
Sampath Kannan
Changhwa Lee
Mallesh M. Pai
Aaron Roth
R. Vohra
FaML
23
36
0
18 Feb 2020
Metric-Free Individual Fairness in Online Learning
Yahav Bechavod
Christopher Jung
Zhiwei Steven Wu
FaML
4
49
0
13 Feb 2020
To Split or Not to Split: The Impact of Disparate Treatment in Classification
Hao Wang
Hsiang Hsu
Mario Díaz
Flavio du Pin Calmon
15
23
0
12 Feb 2020
Deontological Ethics By Monotonicity Shape Constraints
S. Wang
Maya R. Gupta
23
21
0
31 Jan 2020
Lagrangian Duality for Constrained Deep Learning
Ferdinando Fioretto
Pascal Van Hentenryck
Terrence W.K. Mak
Cuong Tran
Federico Baldo
M. Lombardi
PINN
6
78
0
26 Jan 2020
On the Fairness of Randomized Trials for Recommendation with Heterogeneous Demographics and Beyond
Zifeng Wang
Xi Chen
Rui Wen
Shao-Lun Huang
22
1
0
25 Jan 2020
Theory In, Theory Out: The uses of social theory in machine learning for social science
J. Radford
K. Joseph
16
44
0
09 Jan 2020
Learning from Discriminatory Training Data
Przemyslaw A. Grabowicz
Nicholas Perello
Kenta Takatsu
FaML
30
1
0
17 Dec 2019
On the Apparent Conflict Between Individual and Group Fairness
Reuben Binns
FaML
28
305
0
14 Dec 2019
Group Fairness in Bandit Arm Selection
Candice Schumann
Zhi Lang
Nicholas Mattei
John P. Dickerson
FaML
24
15
0
09 Dec 2019
Fair Data Adaptation with Quantile Preservation
Drago Plečko
N. Meinshausen
14
30
0
15 Nov 2019
Auditing and Achieving Intersectional Fairness in Classification Problems
Giulio Morina
V. Oliinyk
J. Waton
Ines Marusic
K. Georgatzis
FaML
19
39
0
04 Nov 2019
What is Fair? Exploring Pareto-Efficiency for Fairness Constrained Classifiers
Ananth Balashankar
Alyssa Lees
Chris Welty
L. Subramanian
14
21
0
30 Oct 2019
Toward a better trade-off between performance and fairness with kernel-based distribution matching
Flavien Prost
Hai Qian
Qiuwen Chen
Ed H. Chi
Jilin Chen
Alex Beutel
FaML
32
44
0
25 Oct 2019
Fairness Sample Complexity and the Case for Human Intervention
Ananth Balashankar
Alyssa Lees
11
3
0
24 Oct 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
41
6,125
0
22 Oct 2019
Keeping Designers in the Loop: Communicating Inherent Algorithmic Trade-offs Across Multiple Objectives
Bowen Yu
Ye Yuan
Loren G. Terveen
Zhiwei Steven Wu
Jodi Forlizzi
Haiyi Zhu
25
2
0
07 Oct 2019
Group-based Fair Learning Leads to Counter-intuitive Predictions
Ofir Nachum
Heinrich Jiang
FaML
19
2
0
04 Oct 2019
What does it mean to solve the problem of discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems
Javier Sánchez-Monedero
L. Dencik
L. Edwards
19
131
0
28 Sep 2019
Generating Fair Universal Representations using Adversarial Models
Peter Kairouz
Jiachun Liao
Chong Huang
Maunil R. Vyas
Monica Welfert
Lalitha Sankar
14
16
0
27 Sep 2019
Advancing subgroup fairness via sleeping experts
Avrim Blum
Thodoris Lykouris
FedML
25
37
0
18 Sep 2019
Learning Fair Rule Lists
Ulrich Aïvodji
Julien Ferry
Sébastien Gambs
Marie-José Huguet
Mohamed Siala
FaML
18
10
0
09 Sep 2019
Optimizing Generalized Rate Metrics through Game Equilibrium
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
11
4
0
06 Sep 2019
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
358
4,237
0
23 Aug 2019
Tackling Algorithmic Bias in Neural-Network Classifiers using Wasserstein-2 Regularization
Laurent Risser
Alberto González Sanz
Quentin Vincenot
Jean-Michel Loubes
30
21
0
15 Aug 2019
Wasserstein Fair Classification
Ray Jiang
Aldo Pacchiano
T. Stepleton
Heinrich Jiang
Silvia Chiappa
33
173
0
28 Jul 2019
Counterfactual Reasoning for Fair Clinical Risk Prediction
Stephen R. Pfohl
Tony Duan
D. Ding
N. Shah
OOD
CML
33
57
0
14 Jul 2019
Rényi Fair Inference
Sina Baharlouei
Maher Nouiehed
Ahmad Beirami
Meisam Razaviyayn
FaML
24
66
0
28 Jun 2019
FlipTest: Fairness Testing via Optimal Transport
Emily Black
Samuel Yeom
Matt Fredrikson
30
94
0
21 Jun 2019
Adversarial training approach for local data debiasing
Ulrich Aïvodji
F. Bidet
Sébastien Gambs
Rosin Claude Ngueveu
Alain Tapp
11
7
0
19 Jun 2019
Pairwise Fairness for Ranking and Regression
Harikrishna Narasimhan
Andrew Cotter
Maya R. Gupta
S. Wang
33
112
0
12 Jun 2019
Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns
YooJung Choi
G. Farnadi
Behrouz Babaki
Guy Van den Broeck
FaML
35
27
0
10 Jun 2019
Maximum Weighted Loss Discrepancy
Fereshte Khani
Aditi Raghunathan
Percy Liang
23
16
0
08 Jun 2019
Equalized odds postprocessing under imperfect group information
Pranjal Awasthi
Matthäus Kleindessner
Jamie Morgenstern
30
89
0
07 Jun 2019
Flexibly Fair Representation Learning by Disentanglement
Elliot Creager
David Madras
J. Jacobsen
Marissa A. Weis
Kevin Swersky
T. Pitassi
R. Zemel
FaML
OOD
25
329
0
06 Jun 2019
Optimized Score Transformation for Consistent Fair Classification
Dennis L. Wei
Karthikeyan N. Ramamurthy
Flavio du Pin Calmon
24
15
0
31 May 2019
Differential Privacy Has Disparate Impact on Model Accuracy
Eugene Bagdasaryan
Vitaly Shmatikov
34
467
0
28 May 2019
Compositional Fairness Constraints for Graph Embeddings
A. Bose
William L. Hamilton
FaML
24
256
0
25 May 2019
An Algorithmic Framework for Fairness Elicitation
Christopher Jung
Michael Kearns
Seth Neel
Aaron Roth
Logan Stapleton
Zhiwei Steven Wu
FedML
FaML
12
56
0
25 May 2019
Average Individual Fairness: Algorithms, Generalization and Experiments
Michael Kearns
Aaron Roth
Saeed Sharifi-Malvajerdi
FaML
FedML
19
84
0
25 May 2019
Proportionally Fair Clustering
Xingyu Chen
Brandon Fain
Charles Lyu
Kamesh Munagala
FedML
FaML
23
141
0
09 May 2019
Fair Classification and Social Welfare
Lily Hu
Yiling Chen
FaML
32
88
0
01 May 2019
Tracking and Improving Information in the Service of Fairness
Sumegha Garg
Michael P. Kim
Omer Reingold
FaML
19
12
0
22 Apr 2019
Introduction to Multi-Armed Bandits
Aleksandrs Slivkins
28
990
0
15 Apr 2019
FairVis: Visual Analytics for Discovering Intersectional Bias in Machine Learning
Ángel Alexander Cabrera
Will Epperson
Fred Hohman
Minsuk Kahng
Jamie Morgenstern
Duen Horng Chau
FaML
22
183
0
10 Apr 2019
Previous
1
2
3
4
5
6
7
8
9
Next