ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1910.00411
14
16

Generating Fair Universal Representations using Adversarial Models

27 September 2019
Peter Kairouz
Jiachun Liao
Chong Huang
Maunil R. Vyas
Monica Welfert
Lalitha Sankar
ArXivPDFHTML
Abstract

We present a data-driven framework for learning fair universal representations (FUR) that guarantee statistical fairness for any learning task that may not be known a priori. Our framework leverages recent advances in adversarial learning to allow a data holder to learn representations in which a set of sensitive attributes are decoupled from the rest of the dataset. We formulate this as a constrained minimax game between an encoder and an adversary where the constraint ensures a measure of usefulness (utility) of the representation. The resulting problem is that of censoring, i.e., finding a representation that is least informative about the sensitive attributes given a utility constraint. For appropriately chosen adversarial loss functions, our censoring framework precisely clarifies the optimal adversarial strategy against strong information-theoretic adversaries; it also achieves the fairness measure of demographic parity for the resulting constrained representations. We evaluate the performance of our proposed framework on both synthetic and publicly available datasets. For these datasets, we use two tradeoff measures: censoring vs. representation fidelity and fairness vs. utility for downstream tasks, to amply demonstrate that multiple sensitive features can be effectively censored even as the resulting fair representations ensure accuracy for multiple downstream tasks.

View on arXiv
Comments on this paper