ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1711.01558
  4. Cited By
Wasserstein Auto-Encoders

Wasserstein Auto-Encoders

5 November 2017
Ilya O. Tolstikhin
Olivier Bousquet
Sylvain Gelly
B. Schölkopf
    DRL
ArXivPDFHTML

Papers citing "Wasserstein Auto-Encoders"

50 / 229 papers shown
Title
DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic
  Style Transfer
DRB-GAN: A Dynamic ResBlock Generative Adversarial Network for Artistic Style Transfer
Wenju Xu
Chengjiang Long
Ruisheng Wang
Guanghui Wang
GAN
41
79
0
17 Aug 2021
Towards to Robust and Generalized Medical Image Segmentation Framework
Yurong Chen
OOD
33
3
0
09 Aug 2021
High-Dimensional Distribution Generation Through Deep Neural Networks
High-Dimensional Distribution Generation Through Deep Neural Networks
Dmytro Perekrestenko
Léandre Eberhard
Helmut Bölcskei
OOD
38
6
0
26 Jul 2021
Estimation of Stationary Optimal Transport Plans
Estimation of Stationary Optimal Transport Plans
Kevin O'Connor
K. Mcgoff
A. Nobel
OT
32
3
0
25 Jul 2021
Improving Variational Autoencoder based Out-of-Distribution Detection
  for Embedded Real-time Applications
Improving Variational Autoencoder based Out-of-Distribution Detection for Embedded Real-time Applications
Yeli Feng
Daniel Jun Xian Ng
Arvind Easwaran
OODD
38
17
0
25 Jul 2021
ScRAE: Deterministic Regularized Autoencoders with Flexible Priors for
  Clustering Single-cell Gene Expression Data
ScRAE: Deterministic Regularized Autoencoders with Flexible Priors for Clustering Single-cell Gene Expression Data
A. Mondal
Himanshu Asnani
Parag Singla
A. Prathosh
UQCV
32
4
0
16 Jul 2021
The Benchmark Lottery
The Benchmark Lottery
Mostafa Dehghani
Yi Tay
A. Gritsenko
Zhe Zhao
N. Houlsby
Fernando Diaz
Donald Metzler
Oriol Vinyals
42
89
0
14 Jul 2021
Deep Extrapolation for Attribute-Enhanced Generation
Deep Extrapolation for Attribute-Enhanced Generation
Alvin Chan
Ali Madani
Ben Krause
Nikhil Naik
29
24
0
07 Jul 2021
Symmetric Wasserstein Autoencoders
Symmetric Wasserstein Autoencoders
S. Sun
Hong Guo
DiffM
GAN
26
0
0
24 Jun 2021
Deep Generative Learning via Schrödinger Bridge
Deep Generative Learning via Schrödinger Bridge
Gefei Wang
Yuling Jiao
Qiang Xu
Yang Wang
Can Yang
DiffM
OT
23
92
0
19 Jun 2021
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
D2C: Diffusion-Denoising Models for Few-shot Conditional Generation
Abhishek Sinha
Jiaming Song
Chenlin Meng
Stefano Ermon
VLM
DiffM
30
118
0
12 Jun 2021
Large-scale optimal transport map estimation using projection pursuit
Large-scale optimal transport map estimation using projection pursuit
Cheng Meng
Y. Ke
Jingyi Zhang
Mengrui Zhang
Wenxuan Zhong
Ping Ma
OT
24
38
0
09 Jun 2021
Exploring Autoencoder-based Error-bounded Compression for Scientific
  Data
Exploring Autoencoder-based Error-bounded Compression for Scientific Data
Jinyang Liu
Sheng Di
Kai Zhao
Sian Jin
Dingwen Tao
Xin Liang
Zizhong Chen
Franck Cappello
22
49
0
25 May 2021
Scalable Personalised Item Ranking through Parametric Density Estimation
Scalable Personalised Item Ranking through Parametric Density Estimation
Riku Togashi
Masahiro Kato
Mayu Otani
T. Sakai
Shiníchi Satoh
38
0
0
11 May 2021
DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data
DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data
Damien Dablain
Bartosz Krawczyk
Nitesh Chawla
29
262
0
05 May 2021
Dual Metric Learning for Effective and Efficient Cross-Domain
  Recommendations
Dual Metric Learning for Effective and Efficient Cross-Domain Recommendations
Pan Li
Alexander Tuzhilin
22
50
0
17 Apr 2021
Non-Asymptotic Performance Guarantees for Neural Estimation of
  $\mathsf{f}$-Divergences
Non-Asymptotic Performance Guarantees for Neural Estimation of f\mathsf{f}f-Divergences
Sreejith Sreekumar
Zhengxin Zhang
Ziv Goldfeld
FedML
32
17
0
11 Mar 2021
Deep Generative Modelling: A Comparative Review of VAEs, GANs,
  Normalizing Flows, Energy-Based and Autoregressive Models
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models
Sam Bond-Taylor
Adam Leach
Yang Long
Chris G. Willcocks
VLM
TPM
41
483
0
08 Mar 2021
Generalizing to Unseen Domains: A Survey on Domain Generalization
Generalizing to Unseen Domains: A Survey on Domain Generalization
Jindong Wang
Cuiling Lan
Chang-Shu Liu
Yidong Ouyang
Tao Qin
Wang Lu
Yiqiang Chen
Wenjun Zeng
Philip S. Yu
OOD
56
1,177
0
02 Mar 2021
Neuron Coverage-Guided Domain Generalization
Neuron Coverage-Guided Domain Generalization
Chris Xing Tian
Haoliang Li
Xiaofei Xie
Yang Liu
Shiqi Wang
23
35
0
27 Feb 2021
Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
  and Tracking
Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction and Tracking
Jiachen Li
Hengbo Ma
Zhihao Zhang
Jinning Li
Masayoshi Tomizuka
60
68
0
18 Feb 2021
On Robust Optimal Transport: Computational Complexity and Barycenter
  Computation
On Robust Optimal Transport: Computational Complexity and Barycenter Computation
Khang Le
Huy Le Nguyen
Quang H. Nguyen
Tung Pham
Hung Bui
Nhat Ho
OT
31
37
0
13 Feb 2021
Learning Audio-Visual Correlations from Variational Cross-Modal
  Generation
Learning Audio-Visual Correlations from Variational Cross-Modal Generation
Ye Zhu
Yu Wu
Hugo Latapie
Yi Yang
Yan Yan
SSL
44
20
0
05 Feb 2021
Disentangled Recurrent Wasserstein Autoencoder
Disentangled Recurrent Wasserstein Autoencoder
Jun Han
Martin Renqiang Min
Ligong Han
Erran L. Li
Xuan Zhang
CoGe
SyDa
DRL
29
33
0
19 Jan 2021
Smooth $p$-Wasserstein Distance: Structure, Empirical Approximation, and
  Statistical Applications
Smooth ppp-Wasserstein Distance: Structure, Empirical Approximation, and Statistical Applications
Sloan Nietert
Ziv Goldfeld
Kengo Kato
41
30
0
11 Jan 2021
Probabilistic Outlier Detection and Generation
Probabilistic Outlier Detection and Generation
S. Rizzo
Linsey Pang
Yixian Chen
Sanjay Chawla
13
0
0
22 Dec 2020
Making transport more robust and interpretable by moving data through a
  small number of anchor points
Making transport more robust and interpretable by moving data through a small number of anchor points
Chi-Heng Lin
Mehdi Azabou
Eva L. Dyer
OT
OOD
35
22
0
21 Dec 2020
Barking up the right tree: an approach to search over molecule synthesis
  DAGs
Barking up the right tree: an approach to search over molecule synthesis DAGs
John Bradshaw
Brooks Paige
Matt J. Kusner
Marwin H. S. Segler
José Miguel Hernández-Lobato
56
56
0
21 Dec 2020
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
Arthur Gretton
S. Mohamed
AAML
35
48
0
14 Dec 2020
Generative Capacity of Probabilistic Protein Sequence Models
Generative Capacity of Probabilistic Protein Sequence Models
Francisco McGee
Quentin Novinger
R. Levy
Vincenzo Carnevale
A. Haldane
35
34
0
03 Dec 2020
TAN-NTM: Topic Attention Networks for Neural Topic Modeling
TAN-NTM: Topic Attention Networks for Neural Topic Modeling
Madhur Panwar
Shashank Shailabh
Milan Aggarwal
Balaji Krishnamurthy
23
24
0
02 Dec 2020
On the Consistency of a Random Forest Algorithm in the Presence of
  Missing Entries
On the Consistency of a Random Forest Algorithm in the Presence of Missing Entries
Irving Gómez-Méndez
Émilien Joly
25
2
0
10 Nov 2020
Optimizing Molecules using Efficient Queries from Property Evaluations
Optimizing Molecules using Efficient Queries from Property Evaluations
Samuel C. Hoffman
Vijil Chenthamarakshan
Kahini Wadhawan
Pin-Yu Chen
Payel Das
41
69
0
03 Nov 2020
Neural Topic Modeling by Incorporating Document Relationship Graph
Neural Topic Modeling by Incorporating Document Relationship Graph
Deyu Zhou
Xuemeng Hu
Rui Wang
22
22
0
29 Sep 2020
Generative Model without Prior Distribution Matching
Generative Model without Prior Distribution Matching
Cong Geng
Jia Wang
L. Chen
Zhiyong Gao
GAN
192
1
0
23 Sep 2020
Generative models with kernel distance in data space
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
Przemysław Spurek
Jacek Tabor
Igor T. Podolak
GAN
SyDa
27
11
0
15 Sep 2020
Adversarial score matching and improved sampling for image generation
Adversarial score matching and improved sampling for image generation
Alexia Jolicoeur-Martineau
Remi Piche-Taillefer
Rémi Tachet des Combes
Ioannis Mitliagkas
DiffM
35
125
0
11 Sep 2020
Generative Adversarial Networks for Image and Video Synthesis:
  Algorithms and Applications
Generative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications
Xuan Li
Xun Huang
Jiahui Yu
Ting-Chun Wang
Arun Mallya
GAN
30
153
0
06 Aug 2020
Automated Detection and Forecasting of COVID-19 using Deep Learning
  Techniques: A Review
Automated Detection and Forecasting of COVID-19 using Deep Learning Techniques: A Review
A. Shoeibi
Marjane Khodatars
M. Jafari
Navid Ghassemi
Delaram Sadeghi
...
Z. Sani
F. Khozeimeh
S. Nahavandi
U. Acharya
Juan M Gorriz
51
178
0
16 Jul 2020
Invertible Zero-Shot Recognition Flows
Invertible Zero-Shot Recognition Flows
Yuming Shen
Jie Qin
Lei Huang
BDL
AI4CE
19
100
0
09 Jul 2020
Efficient Learning of Generative Models via Finite-Difference Score
  Matching
Efficient Learning of Generative Models via Finite-Difference Score Matching
Tianyu Pang
Kun Xu
Chongxuan Li
Yang Song
Stefano Ermon
Jun Zhu
DiffM
31
53
0
07 Jul 2020
PCAAE: Principal Component Analysis Autoencoder for organising the
  latent space of generative networks
PCAAE: Principal Component Analysis Autoencoder for organising the latent space of generative networks
Chi-Hieu Pham
Saïd Ladjal
A. Newson
DRL
38
31
0
14 Jun 2020
End-to-end Sinkhorn Autoencoder with Noise Generator
End-to-end Sinkhorn Autoencoder with Noise Generator
Kamil Deja
Jan Dubiñski
Piotr W. Nowak
S. Wenzel
Tomasz Trzciñski
SyDa
30
22
0
11 Jun 2020
Probabilistic Autoencoder
Probabilistic Autoencoder
Vanessa Böhm
U. Seljak
UQCV
BDL
DRL
24
32
0
09 Jun 2020
Constructing Human Motion Manifold with Sequential Networks
Constructing Human Motion Manifold with Sequential Networks
Deok-Kyeong Jang
Sung-Hee Lee
20
13
0
29 May 2020
Nonparametric Score Estimators
Nonparametric Score Estimators
Yuhao Zhou
Jiaxin Shi
Jun Zhu
35
23
0
20 May 2020
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Jigsaw-VAE: Towards Balancing Features in Variational Autoencoders
Saeid Asgari Taghanaki
Mohammad Havaei
Alex Lamb
Aditya Sanghi
Aram Danielyan
Tonya Custis
DRL
38
7
0
12 May 2020
NTIRE 2020 Challenge on Image and Video Deblurring
NTIRE 2020 Challenge on Image and Video Deblurring
Seungjun Nah
Sanghyun Son
Radu Timofte
Kyoung Mu Lee
67
32
0
04 May 2020
We Need to Talk About Random Splits
We Need to Talk About Random Splits
Anders Søgaard
Sebastian Ebert
Jasmijn Bastings
Katja Filippova
34
97
0
01 May 2020
A Batch Normalized Inference Network Keeps the KL Vanishing Away
A Batch Normalized Inference Network Keeps the KL Vanishing Away
Qile Zhu
Jianlin Su
Wei Bi
Xiaojiang Liu
Xiyao Ma
Xiaolin Li
D. Wu
BDL
DRL
42
61
0
27 Apr 2020
Previous
12345
Next