Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00848
Cited By
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
2 November 2017
Abhishek Kumar
P. Sattigeri
Avinash Balakrishnan
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Variational Inference of Disentangled Latent Concepts from Unlabeled Observations"
50 / 132 papers shown
Title
Analyzing Generative Models by Manifold Entropic Metrics
Daniel Galperin
Ullrich Köthe
DRL
28
0
0
25 Oct 2024
Unsupervised Representation Learning from Sparse Transformation Analysis
Yue Song
Thomas Anderson Keller
Yisong Yue
Pietro Perona
Max Welling
DRL
36
0
0
07 Oct 2024
Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models
Baao Xie
Qiuyu Chen
Yunnan Wang
Zequn Zhang
Xin Jin
Wenjun Zeng
OffRL
43
2
0
26 Jul 2024
MAGIC: Modular Auto-encoder for Generalisable Model Inversion with Bias Corrections
Yihang She
Clement Atzberger
Andrew Blake
Adriano Gualandi
Srinivasan Keshav
AI4CE
30
1
0
29 May 2024
DualContrast: Unsupervised Disentangling of Content and Transformations with Implicit Parameterization
M. R. Uddin
Min Xu
51
0
0
27 May 2024
Towards Controllable Time Series Generation
Yifan Bao
Yihao Ang
Qiang Huang
Anthony K. H. Tung
Zhiyong Huang
DiffM
46
4
0
06 Mar 2024
From Spectra to Biophysical Insights: End-to-End Learning with a Biased Radiative Transfer Model
Yihang She
Clement Atzberger
Andrew Blake
Srinivasan Keshav
27
0
0
05 Mar 2024
Revisiting Disentanglement in Downstream Tasks: A Study on Its Necessity for Abstract Visual Reasoning
Ruiqian Nai
Zixin Wen
Ji Li
Yuanzhi Li
Yang Gao
46
2
0
01 Mar 2024
Sound Source Separation Using Latent Variational Block-Wise Disentanglement
Karim Helwani
M. Togami
Paris Smaragdis
Michael M. Goodwin
BDL
DRL
26
1
0
08 Feb 2024
CFASL: Composite Factor-Aligned Symmetry Learning for Disentanglement in Variational AutoEncoder
Heeseung Jung
Jaehyoung Jeong
Kangil Kim
CoGe
34
0
0
17 Jan 2024
Text Attribute Control via Closed-Loop Disentanglement
Lei Sha
Thomas Lukasiewicz
DRL
45
2
0
01 Dec 2023
Matching aggregate posteriors in the variational autoencoder
Surojit Saha
Sarang Joshi
Ross T. Whitaker
DRL
37
4
0
13 Nov 2023
Identifying Semantic Component for Robust Molecular Property Prediction
Zijian Li
Zunhong Xu
Ruichu Cai
Zhenhui Yang
Yuguang Yan
Zhifeng Hao
Guan-Hong Chen
Kun Zhang
25
9
0
08 Nov 2023
Learning Disentangled Speech Representations
Yusuf Brima
U. Krumnack
Simone Pika
Gunther Heidemann
CoGe
DRL
43
3
0
04 Nov 2023
Subspace Identification for Multi-Source Domain Adaptation
Zijian Li
Ruichu Cai
Guan-Hong Chen
Boyang Sun
Zhifeng Hao
Kun Zhang
36
33
0
07 Oct 2023
Disentanglement Learning via Topology
Nikita Balabin
Daria Voronkova
I. Trofimov
Evgeny Burnaev
S. Barannikov
DRL
60
2
0
24 Aug 2023
Evaluating unsupervised disentangled representation learning for genomic discovery and disease risk prediction
T. Yun
BDL
DRL
14
0
0
17 Jul 2023
A Category-theoretical Meta-analysis of Definitions of Disentanglement
Yivan Zhang
Masashi Sugiyama
38
3
0
11 May 2023
Rotation and Translation Invariant Representation Learning with Implicit Neural Representations
Sehyun Kwon
Jooyoung Choi
Ernest K. Ryu
OOD
41
4
0
27 Apr 2023
How good are variational autoencoders at transfer learning?
Lisa Bonheme
M. Grzes
OOD
DRL
23
2
0
21 Apr 2023
TC-VAE: Uncovering Out-of-Distribution Data Generative Factors
Cristian Meo
Anirudh Goyal
Justin Dauwels
DRL
CoGe
CML
27
2
0
08 Apr 2023
Correcting Flaws in Common Disentanglement Metrics
Louis Mahon
Lei Shah
Thomas Lukasiewicz
CoGe
DRL
42
3
0
05 Apr 2023
Multifactor Sequential Disentanglement via Structured Koopman Autoencoders
Nimrod Berman
Ilana D Naiman
Omri Azencot
CoGe
32
22
0
30 Mar 2023
Object-Centric Slot Diffusion
Jindong Jiang
Fei Deng
Gautam Singh
S. Ahn
DiffM
BDL
OCL
25
57
0
20 Mar 2023
Measuring axiomatic soundness of counterfactual image models
M. Monteiro
Fabio De Sousa Ribeiro
Nick Pawlowski
Daniel Coelho De Castro
Ben Glocker
44
25
0
02 Mar 2023
Autocodificadores Variacionales (VAE) Fundamentos Teóricos y Aplicaciones
J. D. L. Torre
DRL
20
1
0
18 Feb 2023
Disentangling Learning Representations with Density Estimation
Eric C. Yeats
Frank Liu
Hai Helen Li
BDL
DRL
CML
54
2
0
08 Feb 2023
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
Lyle Regenwetter
Akash Srivastava
Dan Gutfreund
Faez Ahmed
24
28
0
06 Feb 2023
A Survey of Methods, Challenges and Perspectives in Causality
Gaël Gendron
Michael Witbrock
Gillian Dobbie
OOD
AI4CE
CML
41
13
0
01 Feb 2023
Emerging Synergies in Causality and Deep Generative Models: A Survey
Guanglin Zhou
Shaoan Xie
Guang-Yuan Hao
Shiming Chen
Erdun Gao
Xiwei Xu
Chen Wang
Liming Zhu
Lina Yao
Kun Zhang
AI4CE
57
11
0
29 Jan 2023
ContraFeat: Contrasting Deep Features for Semantic Discovery
Xinqi Zhu
Chang Xu
Dacheng Tao
DRL
26
2
0
14 Dec 2022
LADIS: Language Disentanglement for 3D Shape Editing
Ian Huang
Panos Achlioptas
Tianyi Zhang
Sergey Tulyakov
Minhyuk Sung
Leonidas J. Guibas
34
10
0
09 Dec 2022
Disentangled Representation Learning
Xin Wang
Hong Chen
Siao Tang
Zihao Wu
Wenwu Zhu
DRL
37
78
0
21 Nov 2022
Neural Systematic Binder
Gautam Singh
Yeongbin Kim
Sungjin Ahn
OCL
32
36
0
02 Nov 2022
Fast and Efficient Scene Categorization for Autonomous Driving using VAEs
Saravanabalagi Ramachandran
Jonathan Horgan
Ganesh Sistu
J. McDonald
3DV
29
1
0
26 Oct 2022
DOT-VAE: Disentangling One Factor at a Time
Vaishnavi Patil
Matthew Evanusa
J. JáJá
CoGe
DRL
CML
23
1
0
19 Oct 2022
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Pascal Vincent
Diane Bouchacourt
CML
OOD
CoGe
41
33
0
13 Oct 2022
Auto-Encoding Goodness of Fit
A. Palmer
Zhiyi Chi
Derek Aguiar
J. Bi
46
1
0
12 Oct 2022
NashAE: Disentangling Representations through Adversarial Covariance Minimization
Eric C. Yeats
Frank Liu
David A. P. Womble
Hai Helen Li
CML
38
10
0
21 Sep 2022
SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
SSL
CoGe
DRL
35
4
0
21 Sep 2022
Disentangling Shape and Pose for Object-Centric Deep Active Inference Models
Stefano Ferraro
Toon Van de Maele
Pietro Mazzaglia
Tim Verbelen
Bart Dhoedt
3DV
OCL
DRL
34
8
0
16 Sep 2022
Gromov-Wasserstein Autoencoders
Nao Nakagawa
Ren Togo
Takahiro Ogawa
Miki Haseyama
GAN
DRL
26
11
0
15 Sep 2022
Weakly Supervised Invariant Representation Learning Via Disentangling Known and Unknown Nuisance Factors
Jiageng Zhu
Hanchen Xie
Wael AbdAlmageed
32
1
0
15 Sep 2022
Modular Representations for Weak Disentanglement
Andrea Valenti
D. Bacciu
36
0
0
12 Sep 2022
Toward Transparent AI: A Survey on Interpreting the Inner Structures of Deep Neural Networks
Tilman Raukur
A. Ho
Stephen Casper
Dylan Hadfield-Menell
AAML
AI4CE
23
124
0
27 Jul 2022
Factorizing Knowledge in Neural Networks
Xingyi Yang
Jingwen Ye
Xinchao Wang
MoMe
47
121
0
04 Jul 2022
When are Post-hoc Conceptual Explanations Identifiable?
Tobias Leemann
Michael Kirchhof
Yao Rong
Enkelejda Kasneci
Gjergji Kasneci
52
10
0
28 Jun 2022
Going Deeper than Tracking: a Survey of Computer-Vision Based Recognition of Animal Pain and Affective States
Sofia Broomé
Marcelo Feighelstein
Anna Zamansky
Gabriel Carreira Lencioni
P. Andersen
Francisca Pessanha
M. Mahmoud
Hedvig Kjellström
A. A. Salah
38
11
0
16 Jun 2022
Embrace the Gap: VAEs Perform Independent Mechanism Analysis
Patrik Reizinger
Luigi Gresele
Jack Brady
Julius von Kügelgen
Dominik Zietlow
Bernhard Schölkopf
Georg Martius
Wieland Brendel
M. Besserve
DRL
35
19
0
06 Jun 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
106
64
0
31 May 2022
1
2
3
Next