Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.00449
Cited By
v1
v2 (latest)
Attacking Binarized Neural Networks
1 November 2017
A. Galloway
Graham W. Taylor
M. Moussa
MQ
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Attacking Binarized Neural Networks"
50 / 59 papers shown
Title
Verifying Properties of Binary Neural Networks Using Sparse Polynomial Optimization
Jianting Yang
Srecko Ðurasinovic
Jean B. Lasserre
Victor Magron
Jun Zhao
AAML
139
1
0
27 May 2024
QGen: On the Ability to Generalize in Quantization Aware Training
Mohammadhossein Askarihemmat
Ahmadreza Jeddi
Reyhane Askari Hemmat
Ivan Lazarevich
Alexander Hoffman
Sudhakar Sah
Ehsan Saboori
Yvon Savaria
Jean-Pierre David
MQ
99
1
0
17 Apr 2024
Investigating the Impact of Quantization on Adversarial Robustness
Qun Li
Yuan Meng
Chen Tang
Jiacheng Jiang
Zhi Wang
79
5
0
08 Apr 2024
The Impact of Quantization on the Robustness of Transformer-based Text Classifiers
Seyed Parsa Neshaei
Yasaman Boreshban
Gholamreza Ghassem-Sani
Seyed Abolghasem Mirroshandel
MQ
58
0
0
08 Mar 2024
ARBiBench: Benchmarking Adversarial Robustness of Binarized Neural Networks
Peng Zhao
Jiehua Zhang
Bowen Peng
Longguang Wang
Yingmei Wei
Yu Liu
Li Liu
AAML
86
0
0
21 Dec 2023
Relationship between Model Compression and Adversarial Robustness: A Review of Current Evidence
Svetlana Pavlitska
Hannes Grolig
J. Marius Zöllner
AAML
138
3
0
27 Nov 2023
BitGNN: Unleashing the Performance Potential of Binary Graph Neural Networks on GPUs
Jou-An Chen
Hsin-Hsuan Sung
Xipeng Shen
Sutanay Choudhury
Ang Li
GNN
MQ
82
7
0
04 May 2023
Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks
Ferheen Ayaz
Idris Zakariyya
José Cano
S. Keoh
Jeremy Singer
D. Pau
Mounia Kharbouche-Harrari
60
6
0
25 Apr 2023
Adversarial Attacks on Machine Learning in Embedded and IoT Platforms
Christian Westbrook
S. Pasricha
AAML
71
3
0
03 Mar 2023
Quantum HyperNetworks: Training Binary Neural Networks in Quantum Superposition
Juan Carrasquilla
Mohamed Hibat-Allah
E. Inack
Alireza Makhzani
Kirill Neklyudov
Graham Taylor
G. Torlai
MQ
65
9
0
19 Jan 2023
Understanding Real-world Threats to Deep Learning Models in Android Apps
Zizhuang Deng
Kai Chen
Guozhu Meng
Xiaodong Zhang
Ke Xu
Yao Cheng
AAML
70
29
0
20 Sep 2022
Hardening DNNs against Transfer Attacks during Network Compression using Greedy Adversarial Pruning
Jonah O'Brien Weiss
Tiago A. O. Alves
S. Kundu
AAML
28
0
0
15 Jun 2022
GAAF: Searching Activation Functions for Binary Neural Networks through Genetic Algorithm
Yanfei Li
Tong Geng
S. Stein
Ang Li
Hui-Ling Yu
MQ
80
8
0
05 Jun 2022
Hardware Approximate Techniques for Deep Neural Network Accelerators: A Survey
Giorgos Armeniakos
Georgios Zervakis
Dimitrios Soudris
J. Henkel
284
98
0
16 Mar 2022
Robust Binary Models by Pruning Randomly-initialized Networks
Chen Liu
Ziqi Zhao
Sabine Süsstrunk
Mathieu Salzmann
TPM
AAML
MQ
87
4
0
03 Feb 2022
Binarized ResNet: Enabling Robust Automatic Modulation Classification at the resource-constrained Edge
Deepsayan Sadhukhan
N. Shankar
Nancy Nayak¢Ó
Thulasi Tholeti¢Ô
Sheetal Kalyani¢Ó
MQ
21
4
0
27 Oct 2021
Defensive Tensorization
Adrian Bulat
Jean Kossaifi
S. Bhattacharya
Yannis Panagakis
Timothy M. Hospedales
Georgios Tzimiropoulos
Nicholas D. Lane
Maja Pantic
AAML
32
4
0
26 Oct 2021
A Layer-wise Adversarial-aware Quantization Optimization for Improving Robustness
Chang Song
Riya Ranjan
H. Li
MQ
67
4
0
23 Oct 2021
2-in-1 Accelerator: Enabling Random Precision Switch for Winning Both Adversarial Robustness and Efficiency
Yonggan Fu
Yang Zhao
Qixuan Yu
Chaojian Li
Yingyan Lin
AAML
170
14
0
11 Sep 2021
Tensor Normalization and Full Distribution Training
Wolfgang Fuhl
OOD
96
4
0
06 Sep 2021
Gradient-Based Interpretability Methods and Binarized Neural Networks
Amy Widdicombe
S. Julier
FAtt
54
1
0
23 Jun 2021
Enhancing Robustness of Neural Networks through Fourier Stabilization
Netanel Raviv
Aidan Kelley
Michael M. Guo
Yevgeny Vorobeychik
AAML
29
13
0
08 Jun 2021
On the Adversarial Robustness of Quantized Neural Networks
Micah Gorsline
James T. Smith
Cory E. Merkel
AAML
93
19
0
01 May 2021
BCNN: Binary Complex Neural Network
Yanfei Li
Tong Geng
Ang Li
Huimin Yu
MQ
51
8
0
28 Mar 2021
Recent Advances in Large Margin Learning
Yiwen Guo
Changshui Zhang
AAML
AI4CE
121
13
0
25 Mar 2021
BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by Adversarial Attacks
M. Vemparala
Alexander Frickenstein
Nael Fasfous
Lukas Frickenstein
Qi Zhao
...
Daniel Ehrhardt
Yuankai Wu
C. Unger
N. S. Nagaraja
W. Stechele
AAML
33
7
0
14 Mar 2021
Improving Adversarial Robustness in Weight-quantized Neural Networks
Chang Song
Elias Fallon
Hai Helen Li
AAML
61
19
0
29 Dec 2020
Towards the Quantification of Safety Risks in Deep Neural Networks
Peipei Xu
Wenjie Ruan
Xiaowei Huang
47
7
0
13 Sep 2020
Adversarial Machine Learning in Image Classification: A Survey Towards the Defender's Perspective
G. R. Machado
Eugênio Silva
R. Goldschmidt
AAML
136
164
0
08 Sep 2020
Defending against substitute model black box adversarial attacks with the 01 loss
Yunzhe Xue
Meiyan Xie
Usman Roshan
AAML
34
1
0
01 Sep 2020
Towards adversarial robustness with 01 loss neural networks
Yunzhe Xue
Meiyan Xie
Usman Roshan
OOD
AAML
66
5
0
20 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
118
73
0
07 Aug 2020
Accelerating Binarized Neural Networks via Bit-Tensor-Cores in Turing GPUs
Ang Li
Simon Su
MQ
85
35
0
30 Jun 2020
On the transferability of adversarial examples between convex and 01 loss models
Yunzhe Xue
Meiyan Xie
Usman Roshan
AAML
29
7
0
14 Jun 2020
Understanding Learning Dynamics of Binary Neural Networks via Information Bottleneck
Vishnu Raj
Nancy Nayak
Sheetal Kalyani
MQ
70
5
0
13 Jun 2020
DarKnight: A Data Privacy Scheme for Training and Inference of Deep Neural Networks
H. Hashemi
Yongqin Wang
M. Annavaram
FedML
84
26
0
01 Jun 2020
Quantized Neural Networks: Characterization and Holistic Optimization
Yoonho Boo
Sungho Shin
Wonyong Sung
MQ
78
8
0
31 May 2020
Efficient Exact Verification of Binarized Neural Networks
Kai Jia
Martin Rinard
AAML
MQ
48
59
0
07 May 2020
EMPIR: Ensembles of Mixed Precision Deep Networks for Increased Robustness against Adversarial Attacks
Sanchari Sen
Balaraman Ravindran
A. Raghunathan
FedML
AAML
63
63
0
21 Apr 2020
Improved Gradient based Adversarial Attacks for Quantized Networks
Kartik Gupta
Thalaiyasingam Ajanthan
MQ
58
19
0
30 Mar 2020
Robust binary classification with the 01 loss
Yunzhe Xue
Meiyan Xie
Usman Roshan
OOD
24
1
0
09 Feb 2020
Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient
Ling Liang
Xing Hu
Lei Deng
Yujie Wu
Guoqi Li
Yufei Ding
Peng Li
Yuan Xie
AAML
122
63
0
01 Jan 2020
Exploring the Back Alleys: Analysing The Robustness of Alternative Neural Network Architectures against Adversarial Attacks
Y. Tan
Yuval Elovici
Alexander Binder
AAML
84
3
0
08 Dec 2019
Error-Correcting Output Codes with Ensemble Diversity for Robust Learning in Neural Networks
Yang Song
Qiyu Kang
Wee Peng Tay
AAML
75
21
0
30 Nov 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
98
18
0
27 Sep 2019
Quantitative Verification of Neural Networks And its Security Applications
Teodora Baluta
Shiqi Shen
Shweta Shinde
Kuldeep S. Meel
P. Saxena
AAML
89
105
0
25 Jun 2019
Defensive Quantization: When Efficiency Meets Robustness
Ji Lin
Chuang Gan
Song Han
MQ
118
204
0
17 Apr 2019
Discretization based Solutions for Secure Machine Learning against Adversarial Attacks
Priyadarshini Panda
I. Chakraborty
Kaushik Roy
AAML
62
40
0
08 Feb 2019
Adversarial Sample Detection for Deep Neural Network through Model Mutation Testing
Jingyi Wang
Guoliang Dong
Jun Sun
Xinyu Wang
Peixin Zhang
AAML
80
191
0
14 Dec 2018
Sparse DNNs with Improved Adversarial Robustness
Yiwen Guo
Chao Zhang
Changshui Zhang
Yurong Chen
AAML
100
154
0
23 Oct 2018
1
2
Next