ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2012.14965
19
19

Improving Adversarial Robustness in Weight-quantized Neural Networks

29 December 2020
Chang Song
Elias Fallon
Hai Helen Li
    AAML
ArXivPDFHTML
Abstract

Neural networks are getting deeper and more computation-intensive nowadays. Quantization is a useful technique in deploying neural networks on hardware platforms and saving computation costs with negligible performance loss. However, recent research reveals that neural network models, no matter full-precision or quantized, are vulnerable to adversarial attacks. In this work, we analyze both adversarial and quantization losses and then introduce criteria to evaluate them. We propose a boundary-based retraining method to mitigate adversarial and quantization losses together and adopt a nonlinear mapping method to defend against white-box gradient-based adversarial attacks. The evaluations demonstrate that our method can better restore accuracy after quantization than other baseline methods on both black-box and white-box adversarial attacks. The results also show that adversarial training suffers quantization loss and does not cooperate well with other training methods.

View on arXiv
Comments on this paper