ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.11379
  4. Cited By
Latent Space Oddity: on the Curvature of Deep Generative Models

Latent Space Oddity: on the Curvature of Deep Generative Models

31 October 2017
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
    DRL
ArXivPDFHTML

Papers citing "Latent Space Oddity: on the Curvature of Deep Generative Models"

50 / 60 papers shown
Title
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
A group-theoretic framework for machine learning in hyperbolic spaces
A group-theoretic framework for machine learning in hyperbolic spaces
Vladimir Jaćimović
54
0
0
12 Jan 2025
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
Luis Augenstein
Noémie Jaquier
Tamim Asfour
Leonel Rozo
33
0
0
28 Oct 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
50
0
0
09 Sep 2024
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual
  Saliency
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
Junhao Chen
Manyi Li
Zherong Pan
Xifeng Gao
Changhe Tu
DiffM
43
2
0
07 Jun 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature
  Attribution
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Johann Schmidt
Sebastian Stober
48
1
0
06 May 2024
Pulling back symmetric Riemannian geometry for data analysis
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
32
2
0
11 Mar 2024
Understanding the Latent Space of Diffusion Models through the Lens of
  Riemannian Geometry
Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry
Yong-Hyun Park
Mingi Kwon
J. Choi
Junghyo Jo
Youngjung Uh
DiffM
40
60
0
24 Jul 2023
Data Representations' Study of Latent Image Manifolds
Data Representations' Study of Latent Image Manifolds
Ilya Kaufman
Omri Azencot
14
7
0
31 May 2023
Geometric constraints improve inference of sparsely observed stochastic
  dynamics
Geometric constraints improve inference of sparsely observed stochastic dynamics
Dimitra Maoutsa
AI4CE
30
3
0
02 Apr 2023
Directional Connectivity-based Segmentation of Medical Images
Directional Connectivity-based Segmentation of Medical Images
Ziyun Yang
Sina Farsiu
38
36
0
31 Mar 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
31
1
0
24 Mar 2023
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Yong-Hyun Park
Mingi Kwon
Junghyo Jo
Youngjung Uh
DiffM
41
22
0
24 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Geometric path augmentation for inference of sparsely observed
  stochastic nonlinear systems
Geometric path augmentation for inference of sparsely observed stochastic nonlinear systems
Dimitra Maoutsa
32
1
0
19 Jan 2023
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation
  for Pretrained Deep Generative Model
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
Takehiro Aoshima
Takashi Matsubara
47
4
0
26 Nov 2022
Neural Conservation Laws: A Divergence-Free Perspective
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
56
51
0
04 Oct 2022
Smooth image-to-image translations with latent space interpolations
Smooth image-to-image translations with latent space interpolations
Yahui Liu
E. Sangineto
Yajing Chen
Linchao Bao
Haoxian Zhang
N. Sebe
Bruno Lepri
Marco De Nadai
48
2
0
03 Oct 2022
A Geometric Perspective on Variational Autoencoders
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
42
21
0
15 Sep 2022
Separable Shape Tensors for Aerodynamic Design
Separable Shape Tensors for Aerodynamic Design
Zach Grey
O. Doronina
Andrew Glaws
21
7
0
04 Aug 2022
Video2StyleGAN: Encoding Video in Latent Space for Manipulation
Video2StyleGAN: Encoding Video in Latent Space for Manipulation
Ji-yang Yu
Jingen Liu
Jing-ling Huang
Wei Zhang
Tao Mei
CVBM
34
0
0
27 Jun 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use
  Case
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
39
29
0
16 Jun 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
37
8
0
10 Jun 2022
Interpolation of Missing Swaption Volatility Data using Gibbs Sampling
  on Variational Autoencoders
Interpolation of Missing Swaption Volatility Data using Gibbs Sampling on Variational Autoencoders
Ivo Richert
R. Buch
32
1
0
21 Apr 2022
Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of
  Anisotropic MRI
Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Jörg Sander
B. D. de Vos
Ivana Ivsgum
DiffM
MedIm
13
15
0
18 Feb 2022
Lagrangian Manifold Monte Carlo on Monge Patches
Lagrangian Manifold Monte Carlo on Monge Patches
M. Hartmann
Mark Girolami
Arto Klami
18
10
0
01 Feb 2022
Geometric instability of out of distribution data across autoencoder
  architecture
Geometric instability of out of distribution data across autoencoder architecture
S. Agarwala
Ben Dees
Corey Lowman
DRL
30
0
0
28 Jan 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for
  multidimensional features
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
46
3
0
25 Jan 2022
Multi-Asset Spot and Option Market Simulation
Multi-Asset Spot and Option Market Simulation
Magnus Wiese
Ben Wood
Alexandre Pachoud
R. Korn
Hans Buehler
Phillip Murray
Lianjun Bai
27
21
0
13 Dec 2021
Qimera: Data-free Quantization with Synthetic Boundary Supporting
  Samples
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples
Kanghyun Choi
Deokki Hong
Noseong Park
Youngsok Kim
Jinho Lee
MQ
27
64
0
04 Nov 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
54
17
0
30 Jun 2021
Smoothing the Disentangled Latent Style Space for Unsupervised
  Image-to-Image Translation
Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-Image Translation
Yahui Liu
E. Sangineto
Yajing Chen
Linchao Bao
Haoxian Zhang
N. Sebe
Bruno Lepri
Wei Wang
Marco De Nadai
DRL
48
44
0
16 Jun 2021
Pulling back information geometry
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
30
14
0
09 Jun 2021
On Linear Interpolation in the Latent Space of Deep Generative Models
On Linear Interpolation in the Latent Space of Deep Generative Models
M. Michelis
Quentin Becker
29
11
0
08 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a
  Geometry-Based Variational Autoencoder
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
48
63
0
30 Apr 2021
Data Augmentation with Variational Autoencoders and Manifold Sampling
Data Augmentation with Variational Autoencoders and Manifold Sampling
Clément Chadebec
S. Allassonnière
DRL
18
23
0
25 Mar 2021
Bayesian Quadrature on Riemannian Data Manifolds
Bayesian Quadrature on Riemannian Data Manifolds
Christian Frohlich
A. Gessner
Philipp Hennig
Bernhard Schölkopf
Georgios Arvanitidis
29
4
0
12 Feb 2021
LaSeSOM: A Latent and Semantic Representation Framework for Soft Object
  Manipulation
LaSeSOM: A Latent and Semantic Representation Framework for Soft Object Manipulation
Peng Zhou
Jihong Zhu
Shengzeng Huo
D. Navarro-Alarcon
27
32
0
10 Dec 2020
Illumination Normalization by Partially Impossible Encoder-Decoder Cost
  Function
Illumination Normalization by Partially Impossible Encoder-Decoder Cost Function
S. Cruz
B. Taetz
Thomas Stifter
D. Stricker
DiffM
22
3
0
06 Nov 2020
Mixing Consistent Deep Clustering
Mixing Consistent Deep Clustering
D. Lutscher
Ali el Hassouni
M. Stol
Mark Hoogendoorn
SSL
19
2
0
03 Nov 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
Principled Interpolation in Normalizing Flows
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Generative models with kernel distance in data space
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
Przemysław Spurek
Jacek Tabor
Igor T. Podolak
GAN
SyDa
27
11
0
15 Sep 2020
Geometrically Enriched Latent Spaces
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Variational Autoencoder with Learned Latent Structure
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
34
42
0
18 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural
  data
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Learning Flat Latent Manifolds with VAEs
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
35
39
0
12 Feb 2020
Quantum device fine-tuning using unsupervised embedding learning
Quantum device fine-tuning using unsupervised embedding learning
N. V. Esbroeck
D. Lennon
H. Moon
Vu-Linh Nguyen
F. Vigneau
...
L. Yu
D. Zumbuhl
G. Briggs
D. Sejdinovic
N. Ares
16
29
0
13 Jan 2020
12
Next