Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.11379
Cited By
Latent Space Oddity: on the Curvature of Deep Generative Models
31 October 2017
Georgios Arvanitidis
Lars Kai Hansen
Søren Hauberg
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Latent Space Oddity: on the Curvature of Deep Generative Models"
50 / 60 papers shown
Title
Image Interpolation with Score-based Riemannian Metrics of Diffusion Models
Shinnosuke Saito
Takashi Matsubara
DiffM
82
1
0
28 Apr 2025
A group-theoretic framework for machine learning in hyperbolic spaces
Vladimir Jaćimović
54
0
0
12 Jan 2025
On Probabilistic Pullback Metrics for Latent Hyperbolic Manifolds
Luis Augenstein
Noémie Jaquier
Tamim Asfour
Leonel Rozo
33
0
0
28 Oct 2024
Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation
Melanie F. Pradier
Javier González
CML
50
0
0
09 Sep 2024
Varying Manifolds in Diffusion: From Time-varying Geometries to Visual Saliency
Junhao Chen
Manyi Li
Zherong Pan
Xifeng Gao
Changhe Tu
DiffM
43
2
0
07 Jun 2024
Manifold Integrated Gradients: Riemannian Geometry for Feature Attribution
Eslam Zaher
Maciej Trzaskowski
Quan Nguyen
Fred Roosta
AAML
29
4
0
16 May 2024
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Johann Schmidt
Sebastian Stober
48
1
0
06 May 2024
Pulling back symmetric Riemannian geometry for data analysis
W. Diepeveen
32
2
0
11 Mar 2024
Understanding the Latent Space of Diffusion Models through the Lens of Riemannian Geometry
Yong-Hyun Park
Mingi Kwon
J. Choi
Junghyo Jo
Youngjung Uh
DiffM
40
60
0
24 Jul 2023
Data Representations' Study of Latent Image Manifolds
Ilya Kaufman
Omri Azencot
14
7
0
31 May 2023
Geometric constraints improve inference of sparsely observed stochastic dynamics
Dimitra Maoutsa
AI4CE
30
3
0
02 Apr 2023
Directional Connectivity-based Segmentation of Medical Images
Ziyun Yang
Sina Farsiu
38
36
0
31 Mar 2023
Variational Inference for Longitudinal Data Using Normalizing Flows
Clément Chadebec
S. Allassonnière
BDL
DRL
28
1
0
24 Mar 2023
Unsupervised Discovery of Semantic Latent Directions in Diffusion Models
Yong-Hyun Park
Mingi Kwon
Junghyo Jo
Youngjung Uh
DiffM
41
22
0
24 Feb 2023
The Geometry of Neural Nets' Parameter Spaces Under Reparametrization
Agustinus Kristiadi
Felix Dangel
Philipp Hennig
32
11
0
14 Feb 2023
Geometric path augmentation for inference of sparsely observed stochastic nonlinear systems
Dimitra Maoutsa
32
1
0
19 Jan 2023
Deep Curvilinear Editing: Commutative and Nonlinear Image Manipulation for Pretrained Deep Generative Model
Takehiro Aoshima
Takashi Matsubara
47
4
0
26 Nov 2022
Neural Conservation Laws: A Divergence-Free Perspective
Jack Richter-Powell
Y. Lipman
Ricky T. Q. Chen
56
51
0
04 Oct 2022
Smooth image-to-image translations with latent space interpolations
Yahui Liu
E. Sangineto
Yajing Chen
Linchao Bao
Haoxian Zhang
N. Sebe
Bruno Lepri
Marco De Nadai
48
2
0
03 Oct 2022
A Geometric Perspective on Variational Autoencoders
Clément Chadebec
S. Allassonnière
DRL
39
21
0
15 Sep 2022
Separable Shape Tensors for Aerodynamic Design
Zach Grey
O. Doronina
Andrew Glaws
19
7
0
04 Aug 2022
Video2StyleGAN: Encoding Video in Latent Space for Manipulation
Ji-yang Yu
Jingen Liu
Jing-ling Huang
Wei Zhang
Tao Mei
CVBM
34
0
0
27 Jun 2022
Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Clément Chadebec
Louis J. Vincent
S. Allassonnière
DRL
36
29
0
16 Jun 2022
GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions
Ryan Lopez
P. Atzberger
AI4CE
34
8
0
10 Jun 2022
Interpolation of Missing Swaption Volatility Data using Gibbs Sampling on Variational Autoencoders
Ivo Richert
R. Buch
32
1
0
21 Apr 2022
Autoencoding Low-Resolution MRI for Semantically Smooth Interpolation of Anisotropic MRI
Jörg Sander
B. D. de Vos
Ivana Ivsgum
DiffM
MedIm
13
15
0
18 Feb 2022
Lagrangian Manifold Monte Carlo on Monge Patches
M. Hartmann
Mark Girolami
Arto Klami
18
10
0
01 Feb 2022
Geometric instability of out of distribution data across autoencoder architecture
S. Agarwala
Ben Dees
Corey Lowman
DRL
30
0
0
28 Jan 2022
Rayleigh EigenDirections (REDs): GAN latent space traversals for multidimensional features
Guha Balakrishnan
Raghudeep Gadde
Aleix M. Martinez
Pietro Perona
46
3
0
25 Jan 2022
Multi-Asset Spot and Option Market Simulation
Magnus Wiese
Ben Wood
Alexandre Pachoud
R. Korn
Hans Buehler
Phillip Murray
Lianjun Bai
27
21
0
13 Dec 2021
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples
Kanghyun Choi
Deokki Hong
Noseong Park
Youngsok Kim
Jinho Lee
MQ
27
64
0
04 Nov 2021
Exploring the Latent Space of Autoencoders with Interventional Assays
Felix Leeb
Stefan Bauer
M. Besserve
Bernhard Schölkopf
DRL
51
17
0
30 Jun 2021
Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-Image Translation
Yahui Liu
E. Sangineto
Yajing Chen
Linchao Bao
Haoxian Zhang
N. Sebe
Bruno Lepri
Wei Wang
Marco De Nadai
DRL
48
44
0
16 Jun 2021
Pulling back information geometry
Georgios Arvanitidis
Miguel González Duque
Alison Pouplin
Dimitris Kalatzis
Søren Hauberg
DRL
30
14
0
09 Jun 2021
On Linear Interpolation in the Latent Space of Deep Generative Models
M. Michelis
Quentin Becker
29
11
0
08 May 2021
Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Clément Chadebec
Elina Thibeau-Sutre
Ninon Burgos
S. Allassonnière
45
63
0
30 Apr 2021
Data Augmentation with Variational Autoencoders and Manifold Sampling
Clément Chadebec
S. Allassonnière
DRL
18
23
0
25 Mar 2021
Bayesian Quadrature on Riemannian Data Manifolds
Christian Frohlich
A. Gessner
Philipp Hennig
Bernhard Schölkopf
Georgios Arvanitidis
29
4
0
12 Feb 2021
LaSeSOM: A Latent and Semantic Representation Framework for Soft Object Manipulation
Peng Zhou
Jihong Zhu
Shengzeng Huo
D. Navarro-Alarcon
27
32
0
10 Dec 2020
Illumination Normalization by Partially Impossible Encoder-Decoder Cost Function
S. Cruz
B. Taetz
Thomas Stifter
D. Stricker
DiffM
22
3
0
06 Nov 2020
Mixing Consistent Deep Clustering
D. Lutscher
Ali el Hassouni
M. Stol
Mark Hoogendoorn
SSL
19
2
0
03 Nov 2020
Geometry-Aware Hamiltonian Variational Auto-Encoder
Clément Chadebec
Clément Mantoux
S. Allassonnière
DRL
24
15
0
22 Oct 2020
Principled Interpolation in Normalizing Flows
Samuel G. Fadel
Sebastian Mair
Ricardo da S. Torres
Ulf Brefeld
83
3
0
22 Oct 2020
Generative models with kernel distance in data space
Szymon Knop
Marcin Mazur
Przemysław Spurek
Jacek Tabor
Igor T. Podolak
GAN
SyDa
27
11
0
15 Sep 2020
Geometrically Enriched Latent Spaces
Georgios Arvanitidis
Søren Hauberg
Bernhard Schölkopf
DRL
19
51
0
02 Aug 2020
Variational Autoencoder with Learned Latent Structure
Marissa Connor
Gregory H. Canal
Christopher Rozell
CML
DRL
31
42
0
18 Jun 2020
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
Kristopher T. Jensen
Ta-Chu Kao
Marco Tripodi
Guillaume Hennequin
DRL
22
31
0
12 Jun 2020
Variational Autoencoders with Riemannian Brownian Motion Priors
Dimitris Kalatzis
David Eklund
Georgios Arvanitidis
Søren Hauberg
BDL
DRL
60
48
0
12 Feb 2020
Learning Flat Latent Manifolds with VAEs
Nutan Chen
Alexej Klushyn
Francesco Ferroni
Justin Bayer
Patrick van der Smagt
DRL
35
39
0
12 Feb 2020
Quantum device fine-tuning using unsupervised embedding learning
N. V. Esbroeck
D. Lennon
H. Moon
Vu-Linh Nguyen
F. Vigneau
...
L. Yu
D. Zumbuhl
G. Briggs
D. Sejdinovic
N. Ares
14
29
0
13 Jan 2020
1
2
Next