Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.11278
Cited By
Approximating Continuous Functions by ReLU Nets of Minimal Width
31 October 2017
Boris Hanin
Mark Sellke
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Approximating Continuous Functions by ReLU Nets of Minimal Width"
49 / 49 papers shown
Title
Non-identifiability distinguishes Neural Networks among Parametric Models
Sourav Chatterjee
Timothy Sudijono
30
0
0
25 Apr 2025
Explicit neural network classifiers for non-separable data
Patrícia Muñoz Ewald
21
0
0
25 Apr 2025
TL-PCA: Transfer Learning of Principal Component Analysis
Sharon Hendy
Yehuda Dar
161
3
0
14 Oct 2024
On the Impacts of the Random Initialization in the Neural Tangent Kernel Theory
Guhan Chen
Yicheng Li
Qian Lin
AAML
38
1
0
08 Oct 2024
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
62
2
0
02 Sep 2024
Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds
Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola-Bibiane Schönlieb
57
0
0
13 Aug 2024
Neural networks in non-metric spaces
Luca Galimberti
56
1
0
13 Jun 2024
A Hyper-Transformer model for Controllable Pareto Front Learning with Split Feasibility Constraints
Tran Anh Tuan
Nguyen Viet Dung
Tran Ngoc Thang
39
3
0
04 Feb 2024
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
Lower Bounds on the Depth of Integral ReLU Neural Networks via Lattice Polytopes
Christian Haase
Christoph Hertrich
Georg Loho
34
21
0
24 Feb 2023
Getting Away with More Network Pruning: From Sparsity to Geometry and Linear Regions
Junyang Cai
Khai-Nguyen Nguyen
Nishant Shrestha
Aidan Good
Ruisen Tu
Xin Yu
Shandian Zhe
Thiago Serra
MLT
40
7
0
19 Jan 2023
LU decomposition and Toeplitz decomposition of a neural network
Yucong Liu
Simiao Jiao
Lek-Heng Lim
30
7
0
25 Nov 2022
Positive-Unlabeled Learning using Random Forests via Recursive Greedy Risk Minimization
Jo Wilton
Abigail M. Y. Koay
R. Ko
Miao Xu
N. Ye
21
13
0
16 Oct 2022
Pure Transformers are Powerful Graph Learners
Jinwoo Kim
Tien Dat Nguyen
Seonwoo Min
Sungjun Cho
Moontae Lee
Honglak Lee
Seunghoon Hong
43
189
0
06 Jul 2022
Lower and Upper Bounds for Numbers of Linear Regions of Graph Convolutional Networks
Hao Chen
Yu Wang
Huan Xiong
GNN
16
6
0
01 Jun 2022
Training Fully Connected Neural Networks is
∃
R
\exists\mathbb{R}
∃
R
-Complete
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
59
30
0
04 Apr 2022
Deep Learning for Epidemiologists: An Introduction to Neural Networks
S. Serghiou
K. Rough
FedML
19
13
0
02 Feb 2022
SPINE: Soft Piecewise Interpretable Neural Equations
Jasdeep Singh Grover
Harsh Minesh Domadia
Rajashree Tapase
Grishma Sharma
16
0
0
20 Nov 2021
Fourier Neural Networks for Function Approximation
R. Subhash
K. Yaswanth
22
1
0
21 Oct 2021
Meta Internal Learning
Raphael Bensadoun
Shir Gur
Tomer Galanti
Lior Wolf
GAN
31
8
0
06 Oct 2021
Densely connected neural networks for nonlinear regression
Chao Jiang
Canchen Jiang
Dongwei Chen
Fei Hu
PINN
13
20
0
29 Jul 2021
COLD: Concurrent Loads Disaggregator for Non-Intrusive Load Monitoring
I. Kamyshev
Dmitrii Kriukov
E. Gryazina
Elena Gryazina
Henni Ouerdane
21
8
0
04 Jun 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
An Iterative LQR Controller for Off-Road and On-Road Vehicles using a Neural Network Dynamics Model
Akhil Nagariya
Srikanth Saripalli
19
28
0
28 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Neural Ordinary Differential Equation Control of Dynamics on Graphs
Thomas Asikis
Lucas Böttcher
Nino Antulov-Fantulin
33
43
0
17 Jun 2020
Minimum Width for Universal Approximation
Sejun Park
Chulhee Yun
Jaeho Lee
Jinwoo Shin
33
121
0
16 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
34
14
0
25 May 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
Are Transformers universal approximators of sequence-to-sequence functions?
Chulhee Yun
Srinadh Bhojanapalli
A. S. Rawat
Sashank J. Reddi
Sanjiv Kumar
6
335
0
20 Dec 2019
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
On Universal Equivariant Set Networks
Nimrod Segol
Y. Lipman
3DPC
19
63
0
06 Oct 2019
Optimal Function Approximation with Relu Neural Networks
Bo Liu
Yi Liang
25
33
0
09 Sep 2019
A Review on Deep Learning in Medical Image Reconstruction
Hai-Miao Zhang
Bin Dong
MedIm
35
122
0
23 Jun 2019
Deep Network Approximation Characterized by Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
20
182
0
13 Jun 2019
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
29
324
0
21 May 2019
Nonlinear Approximation via Compositions
Zuowei Shen
Haizhao Yang
Shijun Zhang
23
92
0
26 Feb 2019
A Survey of the Recent Architectures of Deep Convolutional Neural Networks
Asifullah Khan
A. Sohail
Umme Zahoora
Aqsa Saeed Qureshi
OOD
33
2,268
0
17 Jan 2019
Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks
Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
ODL
27
446
0
21 Nov 2018
ResNet with one-neuron hidden layers is a Universal Approximator
Hongzhou Lin
Stefanie Jegelka
38
227
0
28 Jun 2018
Learning One-hidden-layer ReLU Networks via Gradient Descent
Xiao Zhang
Yaodong Yu
Lingxiao Wang
Quanquan Gu
MLT
28
134
0
20 Jun 2018
On Tighter Generalization Bound for Deep Neural Networks: CNNs, ResNets, and Beyond
Xingguo Li
Junwei Lu
Zhaoran Wang
Jarvis Haupt
T. Zhao
27
78
0
13 Jun 2018
Mad Max: Affine Spline Insights into Deep Learning
Randall Balestriero
Richard Baraniuk
AI4CE
31
78
0
17 May 2018
Optimal approximation of continuous functions by very deep ReLU networks
Dmitry Yarotsky
15
293
0
10 Feb 2018
The power of deeper networks for expressing natural functions
David Rolnick
Max Tegmark
31
174
0
16 May 2017
Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
Yonghui Wu
M. Schuster
Z. Chen
Quoc V. Le
Mohammad Norouzi
...
Alex Rudnick
Oriol Vinyals
G. Corrado
Macduff Hughes
J. Dean
AIMat
716
6,746
0
26 Sep 2016
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
1