Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10733
Cited By
Attacking the Madry Defense Model with
L
1
L_1
L
1
-based Adversarial Examples
30 October 2017
Yash Sharma
Pin-Yu Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Attacking the Madry Defense Model with $L_1$-based Adversarial Examples"
37 / 37 papers shown
Title
A Random Ensemble of Encrypted Vision Transformers for Adversarially Robust Defense
Ryota Iijima
Sayaka Shiota
Hitoshi Kiya
38
6
0
11 Feb 2024
Training on Foveated Images Improves Robustness to Adversarial Attacks
Muhammad Ahmed Shah
Bhiksha Raj
AAML
38
4
0
01 Aug 2023
Adversarial Learning in Real-World Fraud Detection: Challenges and Perspectives
Daniele Lunghi
A. Simitsis
O. Caelen
Gianluca Bontempi
AAML
FaML
48
4
0
03 Jul 2023
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against Adversarial Machine Learning
Mohammad Hossein Samavatian
Saikat Majumdar
Kristin Barber
R. Teodorescu
AAML
28
2
0
31 Jul 2022
Analysis and Extensions of Adversarial Training for Video Classification
K. A. Kinfu
René Vidal
AAML
33
13
0
16 Jun 2022
Art-Attack: Black-Box Adversarial Attack via Evolutionary Art
P. Williams
Ke Li
AAML
27
2
0
07 Mar 2022
Pixle: a fast and effective black-box attack based on rearranging pixels
Jary Pomponi
Simone Scardapane
A. Uncini
AAML
22
32
0
04 Feb 2022
Robust Natural Language Processing: Recent Advances, Challenges, and Future Directions
Marwan Omar
Soohyeon Choi
Daehun Nyang
David A. Mohaisen
32
57
0
03 Jan 2022
Fighting Gradients with Gradients: Dynamic Defenses against Adversarial Attacks
Dequan Wang
An Ju
Evan Shelhamer
David Wagner
Trevor Darrell
AAML
26
27
0
18 May 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
27
6
0
01 Mar 2021
Machine learning pipeline for battery state of health estimation
D. Roman
Saurabh Saxena
Valentin Robu
Michael G. Pecht
David Flynn
34
375
0
01 Feb 2021
Defending Against Multiple and Unforeseen Adversarial Videos
Shao-Yuan Lo
Vishal M. Patel
AAML
31
23
0
11 Sep 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
32
73
0
07 Aug 2020
Adversarial Training against Location-Optimized Adversarial Patches
Sukrut Rao
David Stutz
Bernt Schiele
AAML
19
92
0
05 May 2020
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi
Natalie Frank
M. Mohri
AAML
36
56
0
28 Apr 2020
An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods
Sanghyuk Chun
Seong Joon Oh
Sangdoo Yun
Dongyoon Han
Junsuk Choe
Y. Yoo
AAML
OOD
345
53
0
09 Mar 2020
Attacking Optical Character Recognition (OCR) Systems with Adversarial Watermarks
Lu Chen
Wenyuan Xu
AAML
24
21
0
08 Feb 2020
Scratch that! An Evolution-based Adversarial Attack against Neural Networks
Malhar Jere
Loris Rossi
Briland Hitaj
Gabriela F. Cretu-Ciocarlie
Giacomo Boracchi
F. Koushanfar
AAML
16
18
0
05 Dec 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
106
1,428
0
16 Jul 2019
Adversarial Training and Robustness for Multiple Perturbations
Florian Tramèr
Dan Boneh
AAML
SILM
30
375
0
30 Apr 2019
Adversarial Defense Through Network Profiling Based Path Extraction
Yuxian Qiu
Jingwen Leng
Cong Guo
Quan Chen
Chong Li
Minyi Guo
Yuhao Zhu
AAML
24
51
0
17 Apr 2019
Variational Inference with Latent Space Quantization for Adversarial Resilience
Vinay Kyatham
P. PrathoshA.
Tarun Kumar Yadav
Deepak Mishra
Dheeraj Mundhra
AAML
19
3
0
24 Mar 2019
A Kernelized Manifold Mapping to Diminish the Effect of Adversarial Perturbations
Saeid Asgari Taghanaki
Kumar Abhishek
Shekoofeh Azizi
Ghassan Hamarneh
AAML
31
40
0
03 Mar 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
36
318
0
29 Jan 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
34
721
0
28 Jan 2019
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
CAAD 2018: Generating Transferable Adversarial Examples
Yash Sharma
Tien-Dung Le
M. Alzantot
AAML
SILM
28
7
0
29 Sep 2018
On The Utility of Conditional Generation Based Mutual Information for Characterizing Adversarial Subspaces
Chia-Yi Hsu
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
30
1
0
24 Sep 2018
Distributionally Adversarial Attack
T. Zheng
Changyou Chen
K. Ren
OOD
23
121
0
16 Aug 2018
Is Robustness the Cost of Accuracy? -- A Comprehensive Study on the Robustness of 18 Deep Image Classification Models
D. Su
Huan Zhang
Hongge Chen
Jinfeng Yi
Pin-Yu Chen
Yupeng Gao
VLM
40
389
0
05 Aug 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
50
226
0
18 Jul 2018
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
D. Song
AAML
27
160
0
13 May 2018
Generating Natural Language Adversarial Examples
M. Alzantot
Yash Sharma
Ahmed Elgohary
Bo-Jhang Ho
Mani B. Srivastava
Kai-Wei Chang
AAML
258
916
0
21 Apr 2018
Bypassing Feature Squeezing by Increasing Adversary Strength
Yash Sharma
Pin-Yu Chen
AAML
19
34
0
27 Mar 2018
On the Limitation of Local Intrinsic Dimensionality for Characterizing the Subspaces of Adversarial Examples
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
17
26
0
26 Mar 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
37
1,090
0
27 Dec 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
312
3,115
0
04 Nov 2016
1