ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2202.02236
14
31

Pixle: a fast and effective black-box attack based on rearranging pixels

4 February 2022
Jary Pomponi
Simone Scardapane
A. Uncini
    AAML
ArXivPDFHTML
Abstract

Recent research has found that neural networks are vulnerable to several types of adversarial attacks, where the input samples are modified in such a way that the model produces a wrong prediction that misclassifies the adversarial sample. In this paper we focus on black-box adversarial attacks, that can be performed without knowing the inner structure of the attacked model, nor the training procedure, and we propose a novel attack that is capable of correctly attacking a high percentage of samples by rearranging a small number of pixels within the attacked image. We demonstrate that our attack works on a large number of datasets and models, that it requires a small number of iterations, and that the distance between the original sample and the adversarial one is negligible to the human eye.

View on arXiv
Comments on this paper