Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.10345
Cited By
The Implicit Bias of Gradient Descent on Separable Data
27 October 2017
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Implicit Bias of Gradient Descent on Separable Data"
50 / 240 papers shown
Title
Scaling Laws Under the Microscope: Predicting Transformer Performance from Small Scale Experiments
Maor Ivgi
Y. Carmon
Jonathan Berant
19
17
0
13 Feb 2022
On Regularizing Coordinate-MLPs
Sameera Ramasinghe
L. MacDonald
Simon Lucey
158
5
0
01 Feb 2022
Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks
Noam Razin
Asaf Maman
Nadav Cohen
46
29
0
27 Jan 2022
Implicit Bias of MSE Gradient Optimization in Underparameterized Neural Networks
Benjamin Bowman
Guido Montúfar
28
11
0
12 Jan 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
On the Impact of Hard Adversarial Instances on Overfitting in Adversarial Training
Chen Liu
Zhichao Huang
Mathieu Salzmann
Tong Zhang
Sabine Süsstrunk
AAML
23
13
0
14 Dec 2021
Variational autoencoders in the presence of low-dimensional data: landscape and implicit bias
Frederic Koehler
Viraj Mehta
Chenghui Zhou
Andrej Risteski
DRL
41
12
0
13 Dec 2021
The perils of being unhinged: On the accuracy of classifiers minimizing a noise-robust convex loss
Philip M. Long
Rocco A. Servedio
19
2
0
08 Dec 2021
On the Convergence of Shallow Neural Network Training with Randomly Masked Neurons
Fangshuo Liao
Anastasios Kyrillidis
49
16
0
05 Dec 2021
Depth Without the Magic: Inductive Bias of Natural Gradient Descent
A. Kerekes
Anna Mészáros
Ferenc Huszár
ODL
37
4
0
22 Nov 2021
Deep Probability Estimation
Sheng Liu
Aakash Kaku
Weicheng Zhu
M. Leibovich
S. Mohan
...
Haoxiang Huang
L. Zanna
N. Razavian
Jonathan Niles-Weed
C. Fernandez‐Granda
UQCV
OOD
28
14
0
21 Nov 2021
On the Equivalence between Neural Network and Support Vector Machine
Yilan Chen
Wei Huang
Lam M. Nguyen
Tsui-Wei Weng
AAML
25
18
0
11 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
44
13
0
03 Nov 2021
Regularization by Misclassification in ReLU Neural Networks
Elisabetta Cornacchia
Jan Hązła
Ido Nachum
Amir Yehudayoff
NoLa
25
2
0
03 Nov 2021
Simple data balancing achieves competitive worst-group-accuracy
Badr Youbi Idrissi
Martín Arjovsky
Mohammad Pezeshki
David Lopez-Paz
51
173
0
27 Oct 2021
Rethinking Neural vs. Matrix-Factorization Collaborative Filtering: the Theoretical Perspectives
Zida Cheng
Chuanwei Ruan
Siheng Chen
Sushant Kumar
Ya Zhang
27
16
0
23 Oct 2021
Understanding Dimensional Collapse in Contrastive Self-supervised Learning
Li Jing
Pascal Vincent
Yann LeCun
Yuandong Tian
SSL
25
338
0
18 Oct 2021
Towards Understanding the Data Dependency of Mixup-style Training
Muthuraman Chidambaram
Xiang Wang
Yuzheng Hu
Chenwei Wu
Rong Ge
UQCV
49
24
0
14 Oct 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
55
11
0
13 Oct 2021
Implicit Bias of Linear Equivariant Networks
Hannah Lawrence
Kristian Georgiev
A. Dienes
B. Kiani
AI4CE
40
14
0
12 Oct 2021
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations
Jiayao Zhang
Hua Wang
Weijie J. Su
35
7
0
11 Oct 2021
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang
Minshuo Chen
T. Zhao
Molei Tao
AI4CE
57
40
0
07 Oct 2021
On Margin Maximization in Linear and ReLU Networks
Gal Vardi
Ohad Shamir
Nathan Srebro
52
28
0
06 Oct 2021
Spectral Bias in Practice: The Role of Function Frequency in Generalization
Sara Fridovich-Keil
Raphael Gontijo-Lopes
Rebecca Roelofs
41
28
0
06 Oct 2021
A Farewell to the Bias-Variance Tradeoff? An Overview of the Theory of Overparameterized Machine Learning
Yehuda Dar
Vidya Muthukumar
Richard G. Baraniuk
34
71
0
06 Sep 2021
Logit Attenuating Weight Normalization
Aman Gupta
R. Ramanath
Jun Shi
Anika Ramachandran
Sirou Zhou
Mingzhou Zhou
S. Keerthi
40
1
0
12 Aug 2021
On the Power of Differentiable Learning versus PAC and SQ Learning
Emmanuel Abbe
Pritish Kamath
Eran Malach
Colin Sandon
Nathan Srebro
MLT
77
23
0
09 Aug 2021
Unified Regularity Measures for Sample-wise Learning and Generalization
Chi Zhang
Xiaoning Ma
Yu Liu
Le Wang
Yuanqi Su
Yuehu Liu
39
1
0
09 Aug 2021
Interpolation can hurt robust generalization even when there is no noise
Konstantin Donhauser
Alexandru cTifrea
Michael Aerni
Reinhard Heckel
Fanny Yang
34
14
0
05 Aug 2021
Can contrastive learning avoid shortcut solutions?
Joshua Robinson
Li Sun
Ke Yu
Kayhan Batmanghelich
Stefanie Jegelka
S. Sra
SSL
19
142
0
21 Jun 2021
Deep Learning Through the Lens of Example Difficulty
R. Baldock
Hartmut Maennel
Behnam Neyshabur
47
156
0
17 Jun 2021
What can linearized neural networks actually say about generalization?
Guillermo Ortiz-Jiménez
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
29
43
0
12 Jun 2021
Invariance Principle Meets Information Bottleneck for Out-of-Distribution Generalization
Kartik Ahuja
Ethan Caballero
Dinghuai Zhang
Jean-Christophe Gagnon-Audet
Yoshua Bengio
Ioannis Mitliagkas
Irina Rish
OOD
15
251
0
11 Jun 2021
From inexact optimization to learning via gradient concentration
Bernhard Stankewitz
Nicole Mücke
Lorenzo Rosasco
23
5
0
09 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
22
95
0
05 Jun 2021
Improved OOD Generalization via Adversarial Training and Pre-training
Mingyang Yi
Lu Hou
Jiacheng Sun
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
VLM
31
83
0
24 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
40
196
0
06 May 2021
Two-layer neural networks with values in a Banach space
Yury Korolev
29
23
0
05 May 2021
AdaBoost and robust one-bit compressed sensing
Geoffrey Chinot
Felix Kuchelmeister
Matthias Löffler
Sara van de Geer
35
5
0
05 May 2021
RATT: Leveraging Unlabeled Data to Guarantee Generalization
Saurabh Garg
Sivaraman Balakrishnan
J. Zico Kolter
Zachary Chase Lipton
30
30
0
01 May 2021
Risk Bounds for Over-parameterized Maximum Margin Classification on Sub-Gaussian Mixtures
Yuan Cao
Quanquan Gu
M. Belkin
11
51
0
28 Apr 2021
Understanding the role of importance weighting for deep learning
Da Xu
Yuting Ye
Chuanwei Ruan
FAtt
39
43
0
28 Mar 2021
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
27
109
0
18 Mar 2021
On complementing end-to-end human behavior predictors with planning
Liting Sun
Xiaogang Jia
Anca Dragan
35
17
0
09 Mar 2021
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
Ganesh Ramachandra Kini
Orestis Paraskevas
Samet Oymak
Christos Thrampoulidis
29
93
0
02 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
26
57
0
25 Feb 2021
Dissecting Supervised Contrastive Learning
Florian Graf
Christoph Hofer
Marc Niethammer
Roland Kwitt
SSL
117
70
0
17 Feb 2021
Convergence of stochastic gradient descent schemes for Lojasiewicz-landscapes
Steffen Dereich
Sebastian Kassing
34
27
0
16 Feb 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
33
22
0
14 Feb 2021
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
167
0
29 Jan 2021
Previous
1
2
3
4
5
Next