ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.10345
  4. Cited By
The Implicit Bias of Gradient Descent on Separable Data

The Implicit Bias of Gradient Descent on Separable Data

27 October 2017
Daniel Soudry
Elad Hoffer
Mor Shpigel Nacson
Suriya Gunasekar
Nathan Srebro
ArXivPDFHTML

Papers citing "The Implicit Bias of Gradient Descent on Separable Data"

50 / 244 papers shown
Title
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse
  in Imbalanced Training
Exploring Deep Neural Networks via Layer-Peeled Model: Minority Collapse in Imbalanced Training
Cong Fang
Hangfeng He
Qi Long
Weijie J. Su
FAtt
130
168
0
29 Jan 2021
On the Proof of Global Convergence of Gradient Descent for Deep ReLU
  Networks with Linear Widths
On the Proof of Global Convergence of Gradient Descent for Deep ReLU Networks with Linear Widths
Quynh N. Nguyen
45
48
0
24 Jan 2021
Provable Generalization of SGD-trained Neural Networks of Any Width in
  the Presence of Adversarial Label Noise
Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise
Spencer Frei
Yuan Cao
Quanquan Gu
FedML
MLT
70
19
0
04 Jan 2021
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
NeurIPS 2020 Competition: Predicting Generalization in Deep Learning
Yiding Jiang
Pierre Foret
Scott Yak
Daniel M. Roy
H. Mobahi
Gintare Karolina Dziugaite
Samy Bengio
Suriya Gunasekar
Isabelle M Guyon
Behnam Neyshabur Google Research
OOD
24
55
0
14 Dec 2020
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous
  Neural Networks
The Implicit Bias for Adaptive Optimization Algorithms on Homogeneous Neural Networks
Bohan Wang
Qi Meng
Wei Chen
Tie-Yan Liu
30
33
0
11 Dec 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
258
0
18 Nov 2020
The Deep Bootstrap Framework: Good Online Learners are Good Offline
  Generalizers
The Deep Bootstrap Framework: Good Online Learners are Good Offline Generalizers
Preetum Nakkiran
Behnam Neyshabur
Hanie Sedghi
OffRL
29
11
0
16 Oct 2020
A Unifying View on Implicit Bias in Training Linear Neural Networks
A Unifying View on Implicit Bias in Training Linear Neural Networks
Chulhee Yun
Shankar Krishnan
H. Mobahi
MLT
18
80
0
06 Oct 2020
Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
Statistical Query Algorithms and Low-Degree Tests Are Almost Equivalent
Matthew Brennan
Guy Bresler
Samuel B. Hopkins
Jingkai Li
T. Schramm
19
62
0
13 Sep 2020
Prevalence of Neural Collapse during the terminal phase of deep learning
  training
Prevalence of Neural Collapse during the terminal phase of deep learning training
Vardan Papyan
Xuemei Han
D. Donoho
35
549
0
18 Aug 2020
Obtaining Adjustable Regularization for Free via Iterate Averaging
Obtaining Adjustable Regularization for Free via Iterate Averaging
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
30
2
0
15 Aug 2020
Balanced Meta-Softmax for Long-Tailed Visual Recognition
Balanced Meta-Softmax for Long-Tailed Visual Recognition
Jiawei Ren
Cunjun Yu
Shunan Sheng
Xiao Ma
Haiyu Zhao
Shuai Yi
Hongsheng Li
170
552
0
21 Jul 2020
Long-tail learning via logit adjustment
Long-tail learning via logit adjustment
A. Menon
Sadeep Jayasumana
A. S. Rawat
Himanshu Jain
Andreas Veit
Sanjiv Kumar
65
686
0
14 Jul 2020
Implicit Bias in Deep Linear Classification: Initialization Scale vs
  Training Accuracy
Implicit Bias in Deep Linear Classification: Initialization Scale vs Training Accuracy
E. Moroshko
Suriya Gunasekar
Blake E. Woodworth
J. Lee
Nathan Srebro
Daniel Soudry
35
85
0
13 Jul 2020
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Associative Memory in Iterated Overparameterized Sigmoid Autoencoders
Yibo Jiang
Cengiz Pehlevan
19
13
0
30 Jun 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel
  Regression and Infinitely Wide Neural Networks
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
22
181
0
23 Jun 2020
Gradient descent follows the regularization path for general losses
Gradient descent follows the regularization path for general losses
Ziwei Ji
Miroslav Dudík
Robert Schapire
Matus Telgarsky
AI4CE
FaML
11
60
0
19 Jun 2020
An analytic theory of shallow networks dynamics for hinge loss
  classification
An analytic theory of shallow networks dynamics for hinge loss classification
Franco Pellegrini
Giulio Biroli
35
19
0
19 Jun 2020
Exploring Weight Importance and Hessian Bias in Model Pruning
Exploring Weight Importance and Hessian Bias in Model Pruning
Mingchen Li
Yahya Sattar
Christos Thrampoulidis
Samet Oymak
28
3
0
19 Jun 2020
When Does Preconditioning Help or Hurt Generalization?
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Self-training Avoids Using Spurious Features Under Domain Shift
Self-training Avoids Using Spurious Features Under Domain Shift
Yining Chen
Colin Wei
Ananya Kumar
Tengyu Ma
OOD
29
84
0
17 Jun 2020
Neural Anisotropy Directions
Neural Anisotropy Directions
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
34
16
0
17 Jun 2020
Directional Pruning of Deep Neural Networks
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
21
33
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
32
94
0
15 Jun 2020
On the training dynamics of deep networks with $L_2$ regularization
On the training dynamics of deep networks with L2L_2L2​ regularization
Aitor Lewkowycz
Guy Gur-Ari
44
53
0
15 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
26
8
0
11 Jun 2020
Directional convergence and alignment in deep learning
Directional convergence and alignment in deep learning
Ziwei Ji
Matus Telgarsky
20
164
0
11 Jun 2020
Speedy Performance Estimation for Neural Architecture Search
Speedy Performance Estimation for Neural Architecture Search
Binxin Ru
Clare Lyle
Lisa Schut
M. Fil
Mark van der Wilk
Y. Gal
18
36
0
08 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss
  function matter?
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
43
149
0
16 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
An Investigation of Why Overparameterization Exacerbates Spurious
  Correlations
An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Shiori Sagawa
Aditi Raghunathan
Pang Wei Koh
Percy Liang
152
372
0
09 May 2020
AL2: Progressive Activation Loss for Learning General Representations in
  Classification Neural Networks
AL2: Progressive Activation Loss for Learning General Representations in Classification Neural Networks
Majed El Helou
Frederike Dumbgen
Sabine Süsstrunk
CLL
AI4CE
30
2
0
07 Mar 2020
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast
  Convergence
Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for Fast Convergence
Nicolas Loizou
Sharan Vaswani
I. Laradji
Simon Lacoste-Julien
27
181
0
24 Feb 2020
Implicit Geometric Regularization for Learning Shapes
Implicit Geometric Regularization for Learning Shapes
Amos Gropp
Lior Yariv
Niv Haim
Matan Atzmon
Y. Lipman
AI4CE
60
852
0
24 Feb 2020
An Optimization and Generalization Analysis for Max-Pooling Networks
An Optimization and Generalization Analysis for Max-Pooling Networks
Alon Brutzkus
Amir Globerson
MLT
AI4CE
16
4
0
22 Feb 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
  Trained with the Logistic Loss
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
39
328
0
11 Feb 2020
Exact expressions for double descent and implicit regularization via
  surrogate random design
Exact expressions for double descent and implicit regularization via surrogate random design
Michal Derezinski
Feynman T. Liang
Michael W. Mahoney
27
77
0
10 Dec 2019
Angular Visual Hardness
Angular Visual Hardness
Beidi Chen
Weiyang Liu
Zhiding Yu
Jan Kautz
Anshumali Shrivastava
Animesh Garg
Anima Anandkumar
AAML
43
51
0
04 Dec 2019
Towards Understanding the Spectral Bias of Deep Learning
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
41
215
0
03 Dec 2019
Convolutional Composer Classification
Convolutional Composer Classification
Harsh Verma
John Thickstun
15
13
0
26 Nov 2019
A Model of Double Descent for High-dimensional Binary Linear
  Classification
A Model of Double Descent for High-dimensional Binary Linear Classification
Zeyu Deng
A. Kammoun
Christos Thrampoulidis
36
145
0
13 Nov 2019
On Generalization Bounds of a Family of Recurrent Neural Networks
On Generalization Bounds of a Family of Recurrent Neural Networks
Minshuo Chen
Xingguo Li
T. Zhao
19
70
0
28 Oct 2019
Improved Sample Complexities for Deep Networks and Robust Classification
  via an All-Layer Margin
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
36
85
0
09 Oct 2019
Sampling Bias in Deep Active Classification: An Empirical Study
Sampling Bias in Deep Active Classification: An Empirical Study
Ameya Prabhu
Charles Dognin
M. Singh
19
64
0
20 Sep 2019
Theoretical Issues in Deep Networks: Approximation, Optimization and
  Generalization
Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization
T. Poggio
Andrzej Banburski
Q. Liao
ODL
31
161
0
25 Aug 2019
How Does Learning Rate Decay Help Modern Neural Networks?
How Does Learning Rate Decay Help Modern Neural Networks?
Kaichao You
Mingsheng Long
Jianmin Wang
Michael I. Jordan
30
4
0
05 Aug 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
52
324
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
30
353
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the
  Low-rank Structure of the Jacobian
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
21
88
0
12 Jun 2019
Does Learning Require Memorization? A Short Tale about a Long Tail
Does Learning Require Memorization? A Short Tale about a Long Tail
Vitaly Feldman
TDI
58
482
0
12 Jun 2019
Previous
12345
Next