ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.09412
  4. Cited By
mixup: Beyond Empirical Risk Minimization

mixup: Beyond Empirical Risk Minimization

25 October 2017
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
    NoLa
ArXivPDFHTML

Papers citing "mixup: Beyond Empirical Risk Minimization"

50 / 4,988 papers shown
Title
Time Matters in Regularizing Deep Networks: Weight Decay and Data
  Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence
Time Matters in Regularizing Deep Networks: Weight Decay and Data Augmentation Affect Early Learning Dynamics, Matter Little Near Convergence
Aditya Golatkar
Alessandro Achille
Stefano Soatto
30
95
0
30 May 2019
Meta Dropout: Learning to Perturb Features for Generalization
Meta Dropout: Learning to Perturb Features for Generalization
Haebeom Lee
Taewook Nam
Eunho Yang
Sung Ju Hwang
OOD
22
3
0
30 May 2019
Probabilistic Decoupling of Labels in Classification
Probabilistic Decoupling of Labels in Classification
Jeppe Nørregaard
Lars Kai Hansen
BDL
22
0
0
29 May 2019
High Frequency Component Helps Explain the Generalization of
  Convolutional Neural Networks
High Frequency Component Helps Explain the Generalization of Convolutional Neural Networks
Haohan Wang
Xindi Wu
Pengcheng Yin
Eric Xing
22
513
0
28 May 2019
Image Deformation Meta-Networks for One-Shot Learning
Image Deformation Meta-Networks for One-Shot Learning
Z. Chen
Yanwei Fu
Yu-xiong Wang
Lin Ma
Wei Liu
M. Hebert
15
217
0
28 May 2019
Derivative Manipulation for General Example Weighting
Derivative Manipulation for General Example Weighting
Xinshao Wang
Elyor Kodirov
Yang Hua
N. Robertson
NoLa
13
1
0
27 May 2019
On Mixup Training: Improved Calibration and Predictive Uncertainty for
  Deep Neural Networks
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
S. Thulasidasan
Gopinath Chennupati
J. Bilmes
Tanmoy Bhattacharya
S. Michalak
UQCV
34
529
0
27 May 2019
Blockwise Adaptivity: Faster Training and Better Generalization in Deep
  Learning
Blockwise Adaptivity: Faster Training and Better Generalization in Deep Learning
Shuai Zheng
James T. Kwok
ODL
27
5
0
23 May 2019
Multi-Sample Dropout for Accelerated Training and Better Generalization
Multi-Sample Dropout for Accelerated Training and Better Generalization
H. Inoue
19
68
0
23 May 2019
Augmenting Data with Mixup for Sentence Classification: An Empirical
  Study
Augmenting Data with Mixup for Sentence Classification: An Empirical Study
Hongyu Guo
Yongyi Mao
Richong Zhang
20
234
0
22 May 2019
Semi-Supervised Learning by Augmented Distribution Alignment
Semi-Supervised Learning by Augmented Distribution Alignment
Qin Wang
Wen Li
Luc Van Gool
26
68
0
20 May 2019
DARC: Differentiable ARchitecture Compression
DARC: Differentiable ARchitecture Compression
Shashank Singh
A. Khetan
Zohar Karnin
AI4CE
35
7
0
20 May 2019
Online Hyper-parameter Learning for Auto-Augmentation Strategy
Online Hyper-parameter Learning for Auto-Augmentation Strategy
Chen Lin
Minghao Guo
Chuming Li
Yuan Xin
Wei Wu
Dahua Lin
Wanli Ouyang
Junjie Yan
ODL
21
83
0
17 May 2019
CutMix: Regularization Strategy to Train Strong Classifiers with
  Localizable Features
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
Sangdoo Yun
Dongyoon Han
Seong Joon Oh
Sanghyuk Chun
Junsuk Choe
Y. Yoo
OOD
394
4,694
0
13 May 2019
Multi-class Novelty Detection Using Mix-up Technique
Multi-class Novelty Detection Using Mix-up Technique
Supritam Bhattacharjee
Devraj Mandal
Soma Biswas
25
14
0
11 May 2019
Virtual Mixup Training for Unsupervised Domain Adaptation
Virtual Mixup Training for Unsupervised Domain Adaptation
Xudong Mao
Yun Ma
Zhenguo Yang
Yangbin Chen
Qing Li
38
52
0
10 May 2019
EENA: Efficient Evolution of Neural Architecture
EENA: Efficient Evolution of Neural Architecture
Hui Zhu
Zhulin An
Chuanguang Yang
Kaiqiang Xu
Erhu Zhao
Yongjun Xu
3DV
31
39
0
10 May 2019
MixMatch: A Holistic Approach to Semi-Supervised Learning
MixMatch: A Holistic Approach to Semi-Supervised Learning
David Berthelot
Nicholas Carlini
Ian Goodfellow
Nicolas Papernot
Avital Oliver
Colin Raffel
63
2,992
0
06 May 2019
Privacy-Preserving Deep Neural Networks with Pixel-based Image
  Encryption Considering Data Augmentation in the Encrypted Domain
Privacy-Preserving Deep Neural Networks with Pixel-based Image Encryption Considering Data Augmentation in the Encrypted Domain
Warit Sirichotedumrong
Takahiro Maekawa
Yuma Kinoshita
Hitoshi Kiya
30
88
0
06 May 2019
A Survey on Neural Architecture Search
A Survey on Neural Architecture Search
Martin Wistuba
Ambrish Rawat
Tejaswini Pedapati
AI4CE
17
258
0
04 May 2019
Billion-scale semi-supervised learning for image classification
Billion-scale semi-supervised learning for image classification
I. Z. Yalniz
Hervé Jégou
Kan Chen
Manohar Paluri
D. Mahajan
SSL
36
458
0
02 May 2019
Fast AutoAugment
Fast AutoAugment
Sungbin Lim
Ildoo Kim
Taesup Kim
Chiheon Kim
Sungwoong Kim
35
590
0
01 May 2019
Introducing Graph Smoothness Loss for Training Deep Learning
  Architectures
Introducing Graph Smoothness Loss for Training Deep Learning Architectures
Myriam Bontonou
Carlos Lassance
G. B. Hacene
Vincent Gripon
Jian Tang
Antonio Ortega
14
18
0
01 May 2019
Unsupervised Data Augmentation for Consistency Training
Unsupervised Data Augmentation for Consistency Training
Qizhe Xie
Zihang Dai
Eduard H. Hovy
Minh-Thang Luong
Quoc V. Le
61
2,292
0
29 Apr 2019
Unsupervised Label Noise Modeling and Loss Correction
Unsupervised Label Noise Modeling and Loss Correction
Eric Arazo Sanchez
Diego Ortego
Paul Albert
Noel E. O'Connor
Kevin McGuinness
NoLa
44
603
0
25 Apr 2019
Inner-Imaging Networks: Put Lenses into Convolutional Structure
Inner-Imaging Networks: Put Lenses into Convolutional Structure
Yang Hu
Guihua Wen
Mingnan Luo
Dan Dai
Wenming Cao
Zhiwen Yu
Wendy Hall
17
2
0
22 Apr 2019
Stochastic Region Pooling: Make Attention More Expressive
Stochastic Region Pooling: Make Attention More Expressive
Mingnan Luo
Guihua Wen
Yang Hu
Dan Dai
Yingxue Xu
31
6
0
22 Apr 2019
Good-Enough Compositional Data Augmentation
Good-Enough Compositional Data Augmentation
Jacob Andreas
30
230
0
21 Apr 2019
End-to-End Robotic Reinforcement Learning without Reward Engineering
End-to-End Robotic Reinforcement Learning without Reward Engineering
Avi Singh
Larry Yang
Kristian Hartikainen
Chelsea Finn
Sergey Levine
SSL
OffRL
46
266
0
16 Apr 2019
Unsupervised Singing Voice Conversion
Unsupervised Singing Voice Conversion
Eliya Nachmani
Lior Wolf
21
55
0
13 Apr 2019
Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural
  Networks with Octave Convolution
Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution
Yunpeng Chen
Haoqi Fan
Bing Xu
Zhicheng Yan
Yannis Kalantidis
Marcus Rohrbach
Shuicheng Yan
Jiashi Feng
53
552
0
10 Apr 2019
CondConv: Conditionally Parameterized Convolutions for Efficient
  Inference
CondConv: Conditionally Parameterized Convolutions for Efficient Inference
Brandon Yang
Gabriel Bender
Quoc V. Le
Jiquan Ngiam
MedIm
3DV
31
622
0
10 Apr 2019
Exploring Uncertainty Measures for Image-Caption Embedding-and-Retrieval
  Task
Exploring Uncertainty Measures for Image-Caption Embedding-and-Retrieval Task
Kenta Hama
Takashi Matsubara
K. Uehara
Jianfei Cai
BDL
UQCV
24
6
0
09 Apr 2019
Few-Shot Learning via Saliency-guided Hallucination of Samples
Few-Shot Learning via Saliency-guided Hallucination of Samples
Hongguang Zhang
Jing Zhang
Piotr Koniusz
30
202
0
06 Apr 2019
A Comprehensive Overhaul of Feature Distillation
A Comprehensive Overhaul of Feature Distillation
Byeongho Heo
Jeesoo Kim
Sangdoo Yun
Hyojin Park
Nojun Kwak
J. Choi
21
569
0
03 Apr 2019
Exploiting Synthetically Generated Data with Semi-Supervised Learning
  for Small and Imbalanced Datasets
Exploiting Synthetically Generated Data with Semi-Supervised Learning for Small and Imbalanced Datasets
Maria Perez-Ortiz
Peter Tiño
Rafał K. Mantiuk
C. Hervás‐Martínez
27
16
0
24 Mar 2019
Convolution with even-sized kernels and symmetric padding
Convolution with even-sized kernels and symmetric padding
Shuang Wu
Guanrui Wang
Pei Tang
F. Chen
Luping Shi
22
68
0
20 Mar 2019
Manifold Mixup improves text recognition with CTC loss
Manifold Mixup improves text recognition with CTC loss
Bastien Moysset
Ronaldo O. Messina
27
3
0
11 Mar 2019
Interpolation Consistency Training for Semi-Supervised Learning
Interpolation Consistency Training for Semi-Supervised Learning
Vikas Verma
Kenji Kawaguchi
Alex Lamb
Arno Solin
Arno Solin
Yoshua Bengio
David Lopez-Paz
39
757
0
09 Mar 2019
On Adversarial Mixup Resynthesis
On Adversarial Mixup Resynthesis
Christopher Beckham
S. Honari
Vikas Verma
Alex Lamb
F. Ghadiri
R. Devon Hjelm
Yoshua Bengio
C. Pal
AAML
20
12
0
07 Mar 2019
Safeguarded Dynamic Label Regression for Generalized Noisy Supervision
Jiangchao Yao
Ya Zhang
Ivor W. Tsang
Jun-wei Sun
NoLa
22
1
0
06 Mar 2019
Complement Objective Training
Complement Objective Training
Hao-Yun Chen
Pei-Hsin Wang
Chun-Hao Liu
Shih-Chieh Chang
Jia Pan
Yutian Chen
Wei Wei
Da-Cheng Juan
AAML
25
46
0
04 Mar 2019
SPDA: Superpixel-based Data Augmentation for Biomedical Image
  Segmentation
SPDA: Superpixel-based Data Augmentation for Biomedical Image Segmentation
Yizhe Zhang
Lin Yang
Hao Zheng
Peixian Liang
Colleen A. Mangold
R. Loreto
David P. Hughes
Danny Chen
MedIm
27
13
0
28 Feb 2019
Single-frame Regularization for Temporally Stable CNNs
Single-frame Regularization for Temporally Stable CNNs
Gabriel Eilertsen
Rafał K. Mantiuk
Jonas Unger
19
43
0
27 Feb 2019
LaSO: Label-Set Operations networks for multi-label few-shot learning
LaSO: Label-Set Operations networks for multi-label few-shot learning
Amit Alfassy
Leonid Karlinsky
Amit Aides
J. Shtok
Sivan Harary
Rogerio Feris
Raja Giryes
A. Bronstein
51
117
0
26 Feb 2019
MultiGrain: a unified image embedding for classes and instances
MultiGrain: a unified image embedding for classes and instances
Maxim Berman
Hervé Jégou
Andrea Vedaldi
Iasonas Kokkinos
Matthijs Douze
15
110
0
14 Feb 2019
Bag of Freebies for Training Object Detection Neural Networks
Bag of Freebies for Training Object Detection Neural Networks
Zhi-Li Zhang
Tong He
Hang Zhang
Zhongyue Zhang
Junyuan Xie
Mu Li
VLM
ObjD
20
188
0
11 Feb 2019
Semi-Supervised and Task-Driven Data Augmentation
Semi-Supervised and Task-Driven Data Augmentation
K. Chaitanya
Neerav Karani
Christian F. Baumgartner
O. Donati
Anton S. Becker
E. Konukoglu
MedIm
18
142
0
11 Feb 2019
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for
  Health Profiling
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling
Hao Wang
Chengzhi Mao
Hao He
Mingmin Zhao
Tommi Jaakkola
Dina Katabi
BDL
24
22
0
06 Feb 2019
An Empirical Study on Regularization of Deep Neural Networks by Local
  Rademacher Complexity
An Empirical Study on Regularization of Deep Neural Networks by Local Rademacher Complexity
Yingzhen Yang
Jiahui Yu
Xingjian Li
Jun Huan
Thomas S. Huang
AI4CE
25
6
0
03 Feb 2019
Previous
123...100979899
Next