ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07320
29
39

EENA: Efficient Evolution of Neural Architecture

10 May 2019
Hui Zhu
Zhulin An
Chuanguang Yang
Kaiqiang Xu
Erhu Zhao
Yongjun Xu
    3DV
ArXivPDFHTML
Abstract

Latest algorithms for automatic neural architecture search perform remarkable but are basically directionless in search space and computational expensive in training of every intermediate architecture. In this paper, we propose a method for efficient architecture search called EENA (Efficient Evolution of Neural Architecture). Due to the elaborately designed mutation and crossover operations, the evolution process can be guided by the information have already been learned. Therefore, less computational effort will be required while the searching and training time can be reduced significantly. On CIFAR-10 classification, EENA using minimal computational resources (0.65 GPU-days) can design highly effective neural architecture which achieves 2.56% test error with 8.47M parameters. Furthermore, the best architecture discovered is also transferable for CIFAR-100.

View on arXiv
Comments on this paper