ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.07373
13
83

Online Hyper-parameter Learning for Auto-Augmentation Strategy

17 May 2019
Chen Lin
Minghao Guo
Chuming Li
Yuan Xin
Wei Wu
Dahua Lin
Wanli Ouyang
Junjie Yan
    ODL
ArXivPDFHTML
Abstract

Data augmentation is critical to the success of modern deep learning techniques. In this paper, we propose Online Hyper-parameter Learning for Auto-Augmentation (OHL-Auto-Aug), an economical solution that learns the augmentation policy distribution along with network training. Unlike previous methods on auto-augmentation that search augmentation strategies in an offline manner, our method formulates the augmentation policy as a parameterized probability distribution, thus allowing its parameters to be optimized jointly with network parameters. Our proposed OHL-Auto-Aug eliminates the need of re-training and dramatically reduces the cost of the overall search process, while establishes significantly accuracy improvements over baseline models. On both CIFAR-10 and ImageNet, our method achieves remarkable on search accuracy, 60x faster on CIFAR-10 and 24x faster on ImageNet, while maintaining competitive accuracies.

View on arXiv
Comments on this paper