Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.03667
Cited By
High-dimensional dynamics of generalization error in neural networks
10 October 2017
Madhu S. Advani
Andrew M. Saxe
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"High-dimensional dynamics of generalization error in neural networks"
50 / 296 papers shown
Title
On the geometry of generalization and memorization in deep neural networks
Cory Stephenson
Suchismita Padhy
Abhinav Ganesh
Yue Hui
Hanlin Tang
SueYeon Chung
TDI
AI4CE
16
73
0
30 May 2021
A Theory of Neural Tangent Kernel Alignment and Its Influence on Training
H. Shan
Blake Bordelon
11
11
0
29 May 2021
Towards Understanding the Condensation of Neural Networks at Initial Training
Hanxu Zhou
Qixuan Zhou
Tao Luo
Yaoyu Zhang
Z. Xu
MLT
AI4CE
19
26
0
25 May 2021
Relative stability toward diffeomorphisms indicates performance in deep nets
Leonardo Petrini
Alessandro Favero
Mario Geiger
M. Wyart
OOD
38
15
0
06 May 2021
The Geometry of Over-parameterized Regression and Adversarial Perturbations
J. Rocks
Pankaj Mehta
AAML
11
8
0
25 Mar 2021
The Shape of Learning Curves: a Review
T. Viering
Marco Loog
18
122
0
19 Mar 2021
The Low-Rank Simplicity Bias in Deep Networks
Minyoung Huh
H. Mobahi
Richard Y. Zhang
Brian Cheung
Pulkit Agrawal
Phillip Isola
22
109
0
18 Mar 2021
On the interplay between data structure and loss function in classification problems
Stéphane dÁscoli
Marylou Gabrié
Levent Sagun
Giulio Biroli
29
17
0
09 Mar 2021
On the Generalization Power of Overfitted Two-Layer Neural Tangent Kernel Models
Peizhong Ju
Xiaojun Lin
Ness B. Shroff
MLT
24
10
0
09 Mar 2021
Asymptotics of Ridge Regression in Convolutional Models
Mojtaba Sahraee-Ardakan
Tung Mai
Anup B. Rao
Ryan Rossi
S. Rangan
A. Fletcher
MLT
16
2
0
08 Mar 2021
Exact Gap between Generalization Error and Uniform Convergence in Random Feature Models
Zitong Yang
Yu Bai
Song Mei
16
17
0
08 Mar 2021
Asymptotic Risk of Overparameterized Likelihood Models: Double Descent Theory for Deep Neural Networks
Ryumei Nakada
Masaaki Imaizumi
21
2
0
28 Feb 2021
Two-way kernel matrix puncturing: towards resource-efficient PCA and spectral clustering
Romain Couillet
Florent Chatelain
N. L. Bihan
19
8
0
24 Feb 2021
Implicit Regularization in Tensor Factorization
Noam Razin
Asaf Maman
Nadav Cohen
27
48
0
19 Feb 2021
Double-descent curves in neural networks: a new perspective using Gaussian processes
Ouns El Harzli
Bernardo Cuenca Grau
Guillermo Valle Pérez
A. Louis
15
6
0
14 Feb 2021
Learning by Turning: Neural Architecture Aware Optimisation
Yang Liu
Jeremy Bernstein
M. Meister
Yisong Yue
ODL
41
26
0
14 Feb 2021
Distilling Double Descent
Andrew Cotter
A. Menon
Harikrishna Narasimhan
A. S. Rawat
Sashank J. Reddi
Yichen Zhou
25
7
0
13 Feb 2021
Explaining Neural Scaling Laws
Yasaman Bahri
Ethan Dyer
Jared Kaplan
Jaehoon Lee
Utkarsh Sharma
27
250
0
12 Feb 2021
Meta-learning with negative learning rates
A. Bernacchia
17
17
0
01 Feb 2021
A Statistician Teaches Deep Learning
G. Babu
David L. Banks
Hyunsoo Cho
David Han
Hailin Sang
Shouyi Wang
20
2
0
29 Jan 2021
Self-Adaptive Training: Bridging Supervised and Self-Supervised Learning
Lang Huang
Chaoning Zhang
Hongyang R. Zhang
SSL
33
24
0
21 Jan 2021
On Data-Augmentation and Consistency-Based Semi-Supervised Learning
Atin Ghosh
Alexandre Hoang Thiery
73
20
0
18 Jan 2021
Phases of learning dynamics in artificial neural networks: with or without mislabeled data
Yu Feng
Y. Tu
25
2
0
16 Jan 2021
Perspective: A Phase Diagram for Deep Learning unifying Jamming, Feature Learning and Lazy Training
Mario Geiger
Leonardo Petrini
M. Wyart
DRL
23
11
0
30 Dec 2020
Analysis of the Scalability of a Deep-Learning Network for Steganography "Into the Wild"
Hugo Ruiz
Marc Chaumont
Mehdi Yedroudj
A. Amara
Frédéric Comby
Gérard Subsol
21
9
0
29 Dec 2020
Avoiding The Double Descent Phenomenon of Random Feature Models Using Hybrid Regularization
Kelvin K. Kan
J. Nagy
Lars Ruthotto
AI4CE
37
6
0
11 Dec 2020
Statistical Mechanics of Deep Linear Neural Networks: The Back-Propagating Kernel Renormalization
Qianyi Li
H. Sompolinsky
16
69
0
07 Dec 2020
Align, then memorise: the dynamics of learning with feedback alignment
Maria Refinetti
Stéphane dÁscoli
Ruben Ohana
Sebastian Goldt
26
36
0
24 Nov 2020
Gradient Starvation: A Learning Proclivity in Neural Networks
Mohammad Pezeshki
Sekouba Kaba
Yoshua Bengio
Aaron Courville
Doina Precup
Guillaume Lajoie
MLT
50
257
0
18 Nov 2020
Understanding Double Descent Requires a Fine-Grained Bias-Variance Decomposition
Ben Adlam
Jeffrey Pennington
UD
37
93
0
04 Nov 2020
Memorizing without overfitting: Bias, variance, and interpolation in over-parameterized models
J. Rocks
Pankaj Mehta
13
41
0
26 Oct 2020
A Dynamical View on Optimization Algorithms of Overparameterized Neural Networks
Zhiqi Bu
Shiyun Xu
Kan Chen
25
17
0
25 Oct 2020
What causes the test error? Going beyond bias-variance via ANOVA
Licong Lin
Yan Sun
22
34
0
11 Oct 2020
On the Universality of the Double Descent Peak in Ridgeless Regression
David Holzmüller
10
12
0
05 Oct 2020
Small Data, Big Decisions: Model Selection in the Small-Data Regime
J. Bornschein
Francesco Visin
Simon Osindero
13
36
0
26 Sep 2020
Towards a Mathematical Understanding of Neural Network-Based Machine Learning: what we know and what we don't
E. Weinan
Chao Ma
Stephan Wojtowytsch
Lei Wu
AI4CE
22
133
0
22 Sep 2020
Distributional Generalization: A New Kind of Generalization
Preetum Nakkiran
Yamini Bansal
OOD
21
41
0
17 Sep 2020
Asymptotics of Wide Convolutional Neural Networks
Anders Andreassen
Ethan Dyer
14
22
0
19 Aug 2020
The Neural Tangent Kernel in High Dimensions: Triple Descent and a Multi-Scale Theory of Generalization
Ben Adlam
Jeffrey Pennington
15
124
0
15 Aug 2020
Provable More Data Hurt in High Dimensional Least Squares Estimator
Zeng Li
Chuanlong Xie
Qinwen Wang
15
6
0
14 Aug 2020
The Slow Deterioration of the Generalization Error of the Random Feature Model
Chao Ma
Lei Wu
E. Weinan
20
15
0
13 Aug 2020
Shallow Univariate ReLu Networks as Splines: Initialization, Loss Surface, Hessian, & Gradient Flow Dynamics
Justin Sahs
Ryan Pyle
Aneel Damaraju
J. O. Caro
Onur Tavaslioglu
Andy Lu
Ankit B. Patel
18
19
0
04 Aug 2020
Multiple Descent: Design Your Own Generalization Curve
Lin Chen
Yifei Min
M. Belkin
Amin Karbasi
DRL
23
61
0
03 Aug 2020
Finite Versus Infinite Neural Networks: an Empirical Study
Jaehoon Lee
S. Schoenholz
Jeffrey Pennington
Ben Adlam
Lechao Xiao
Roman Novak
Jascha Narain Sohl-Dickstein
17
207
0
31 Jul 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
M. Wyart
MLT
55
34
0
22 Jul 2020
Early Stopping in Deep Networks: Double Descent and How to Eliminate it
Reinhard Heckel
Fatih Yilmaz
26
43
0
20 Jul 2020
Data-driven effective model shows a liquid-like deep learning
Wenxuan Zou
Haiping Huang
24
2
0
16 Jul 2020
GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
Dmitry Lepikhin
HyoukJoong Lee
Yuanzhong Xu
Dehao Chen
Orhan Firat
Yanping Huang
M. Krikun
Noam M. Shazeer
Z. Chen
MoE
20
1,106
0
30 Jun 2020
Statistical Mechanical Analysis of Neural Network Pruning
Rupam Acharyya
Ankani Chattoraj
Boyu Zhang
Shouman Das
Daniel Stefankovic
24
0
0
30 Jun 2020
The Gaussian equivalence of generative models for learning with shallow neural networks
Sebastian Goldt
Bruno Loureiro
Galen Reeves
Florent Krzakala
M. Mézard
Lenka Zdeborová
BDL
41
100
0
25 Jun 2020
Previous
1
2
3
4
5
6
Next