Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1709.02540
Cited By
The Expressive Power of Neural Networks: A View from the Width
8 September 2017
Zhou Lu
Hongming Pu
Feicheng Wang
Zhiqiang Hu
Liwei Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Expressive Power of Neural Networks: A View from the Width"
50 / 122 papers shown
Title
Learning High-Dimensional Parametric Maps via Reduced Basis Adaptive Residual Networks
Thomas O'Leary-Roseberry
Xiaosong Du
A. Chaudhuri
J. Martins
Karen E. Willcox
Omar Ghattas
30
22
0
14 Dec 2021
NN-LUT: Neural Approximation of Non-Linear Operations for Efficient Transformer Inference
Joonsang Yu
Junki Park
Seongmin Park
Minsoo Kim
Sihwa Lee
Dong Hyun Lee
Jungwook Choi
35
48
0
03 Dec 2021
Reconstructing Nonlinear Dynamical Systems from Multi-Modal Time Series
Daniel Kramer
P. Bommer
Carlo Tombolini
G. Koppe
Daniel Durstewitz
BDL
AI4TS
AI4CE
25
18
0
04 Nov 2021
Fourier Neural Networks for Function Approximation
R. Subhash
K. Yaswanth
20
1
0
21 Oct 2021
Meta Internal Learning
Raphael Bensadoun
Shir Gur
Tomer Galanti
Lior Wolf
GAN
31
8
0
06 Oct 2021
Robust Nonparametric Regression with Deep Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
OOD
33
13
0
21 Jul 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Geoff Pleiss
John P. Cunningham
28
24
0
11 Jun 2021
Relational Reasoning Networks
G. Marra
Michelangelo Diligenti
Francesco Giannini
NAI
29
4
0
01 Jun 2021
ReLU Deep Neural Networks from the Hierarchical Basis Perspective
Juncai He
Lin Li
Jinchao Xu
AI4CE
28
30
0
10 May 2021
A Geometric Analysis of Neural Collapse with Unconstrained Features
Zhihui Zhu
Tianyu Ding
Jinxin Zhou
Xiao Li
Chong You
Jeremias Sulam
Qing Qu
24
194
0
06 May 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
174
246
0
01 May 2021
Deep limits and cut-off phenomena for neural networks
B. Avelin
A. Karlsson
AI4CE
32
2
0
21 Apr 2021
Elvet -- a neural network-based differential equation and variational problem solver
Jack Y. Araz
J. C. Criado
M. Spannowsky
21
13
0
26 Mar 2021
JFB: Jacobian-Free Backpropagation for Implicit Networks
Samy Wu Fung
Howard Heaton
Qiuwei Li
Daniel McKenzie
Stanley Osher
W. Yin
FedML
35
84
0
23 Mar 2021
Deep KKL: Data-driven Output Prediction for Non-Linear Systems
Steeven Janny
V. Andrieu
Madiha Nadri Wolf
Christian Wolf
AI4TS
22
13
0
23 Mar 2021
Function approximation by deep neural networks with parameters
{
0
,
±
1
2
,
±
1
,
2
}
\{0,\pm \frac{1}{2}, \pm 1, 2\}
{
0
,
±
2
1
,
±
1
,
2
}
A. Beknazaryan
13
5
0
15 Mar 2021
Non-Asymptotic Performance Guarantees for Neural Estimation of
f
\mathsf{f}
f
-Divergences
Sreejith Sreekumar
Zhengxin Zhang
Ziv Goldfeld
FedML
24
17
0
11 Mar 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
101
115
0
28 Feb 2021
Scaling Up Bayesian Uncertainty Quantification for Inverse Problems using Deep Neural Networks
Shiwei Lan
Shuyi Li
Babak Shahbaba
UQCV
BDL
25
16
0
11 Jan 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
32
2
0
04 Jan 2021
Convex Potential Flows: Universal Probability Distributions with Optimal Transport and Convex Optimization
Chin-Wei Huang
Ricky T. Q. Chen
Christos Tsirigotis
Aaron Courville
OT
119
95
0
10 Dec 2020
The universal approximation theorem for complex-valued neural networks
F. Voigtlaender
27
62
0
06 Dec 2020
On the application of Physically-Guided Neural Networks with Internal Variables to Continuum Problems
J. Ayensa-Jiménez
M. H. Doweidar
J. A. Sanz-Herrera
Manuel Doblaré
24
1
0
23 Nov 2020
A Perspective on Machine Learning Methods in Turbulence Modelling
Andrea Beck
Marius Kurz
AI4CE
47
101
0
23 Oct 2020
Learning to Embed Categorical Features without Embedding Tables for Recommendation
Wang-Cheng Kang
D. Cheng
Tiansheng Yao
Xinyang Yi
Ting-Li Chen
Lichan Hong
Ed H. Chi
LMTD
CML
DML
50
68
0
21 Oct 2020
Towards Reflectivity profile inversion through Artificial Neural Networks
J. M. Carmona Loaiza
Zamaan Raza
15
11
0
15 Oct 2020
Prediction intervals for Deep Neural Networks
Tullio Mancini
Hector F. Calvo-Pardo
Jose Olmo
UQCV
OOD
23
4
0
08 Oct 2020
The Traveling Observer Model: Multi-task Learning Through Spatial Variable Embeddings
Elliot Meyerson
Risto Miikkulainen
16
12
0
05 Oct 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
Malicious Network Traffic Detection via Deep Learning: An Information Theoretic View
Erick Galinkin
AAML
15
0
0
16 Sep 2020
Unnormalized Variational Bayes
Saeed Saremi
BDL
81
1
0
29 Jul 2020
Multi-Task Learning for Multi-Dimensional Regression: Application to Luminescence Sensing
Umberto
Umberto Michelucci
F. Venturini
AI4CE
13
19
0
27 Jul 2020
Learnable Descent Algorithm for Nonsmooth Nonconvex Image Reconstruction
Yunmei Chen
Hongcheng Liu
X. Ye
Qingchao Zhang
56
23
0
22 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
The Depth-to-Width Interplay in Self-Attention
Yoav Levine
Noam Wies
Or Sharir
Hofit Bata
Amnon Shashua
30
45
0
22 Jun 2020
Minimum Width for Universal Approximation
Sejun Park
Chulhee Yun
Jaeho Lee
Jinwoo Shin
30
121
0
16 Jun 2020
Scalable Partial Explainability in Neural Networks via Flexible Activation Functions
S. Sun
Chen Li
Zhuangkun Wei
Antonios Tsourdos
Weisi Guo
FAtt
32
2
0
10 Jun 2020
Learning Efficient Representations of Mouse Movements to Predict User Attention
Ioannis Arapakis
Luis A. Leiva
HAI
11
26
0
30 May 2020
How hard is to distinguish graphs with graph neural networks?
Andreas Loukas
GNN
25
6
0
13 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
37
51
0
02 May 2020
On Deep Instrumental Variables Estimate
Ruiqi Liu
Zuofeng Shang
Guang Cheng
24
25
0
30 Apr 2020
It's Not What Machines Can Learn, It's What We Cannot Teach
Gal Yehuda
Moshe Gabel
Assaf Schuster
FaML
14
37
0
21 Feb 2020
A closer look at the approximation capabilities of neural networks
Kai Fong Ernest Chong
13
16
0
16 Feb 2020
Invariant Risk Minimization Games
Kartik Ahuja
Karthikeyan Shanmugam
Kush R. Varshney
Amit Dhurandhar
OOD
21
244
0
11 Feb 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Sparse Weight Activation Training
Md Aamir Raihan
Tor M. Aamodt
34
73
0
07 Jan 2020
Deep Learning via Dynamical Systems: An Approximation Perspective
Qianxiao Li
Ting Lin
Zuowei Shen
AI4TS
AI4CE
16
107
0
22 Dec 2019
Are Transformers universal approximators of sequence-to-sequence functions?
Chulhee Yun
Srinadh Bhojanapalli
A. S. Rawat
Sashank J. Reddi
Sanjiv Kumar
6
335
0
20 Dec 2019
Deep Learning-based Limited Feedback Designs for MIMO Systems
Jeonghyeon Jang
Hoon Lee
S. Hwang
Haibao Ren
Inkyu Lee
AI4CE
14
32
0
19 Dec 2019
Analysis of Deep Neural Networks with Quasi-optimal polynomial approximation rates
Joseph Daws
Clayton Webster
30
8
0
04 Dec 2019
Previous
1
2
3
Next